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SOLUTIONS TO ASSIGNMENT 5
Exercise 1 (List decodability of linear codes). Show that with high probability, a random (binary)
linear code obtained by choosing an nR × n generator matrix uniformly at random is (p, L)-list
decodable as long as

R ≤ 1−H(p)− 1

dlog2(L+ 1)e
.

Hint: Argue that any set of L+ 1 vectors in Fk2 contains at least dlog2(L+ 1)e linearly independent
vectors. If two messages are linearly independent, then what can you say about the corresponding
codewords of the random linear code?

Solution. Let B(y, np) , {x ∈ Fn2 : d(x,y) ≤ np} denote the Hamming ball of radius np. For a
message m ∈ FnR2 , let c(m) denote the corresponding codeword. It suffices to show that

Pr
[
∃m1, . . . ,mL+1 ∈ FnR2 ,y ∈ Fn2 : c(m1), . . . , c(mL+1) ∈ B(y, np)

]
= o(1).

A set of l linearly independent vectors in Fk2 spans a space of size 2l. Now, consider a set S
of vectors and let l(S) denote the maximal number of independent vectors of S. Since a maximal
set spans S, it must be the case that 2l(S) ≥ |S|, or l(S) ≥ log2 |S|. Therefore, any set of L + 1
messages contains a linearly independent set of size greater than or equal to dlog2(L + 1)e. Define
l , dlog2(L+ 1)e.

Now, let m1, . . . ,ml denote l linearly independent messages. Let gk denote a column of the
generator matrix (this column is randomly generated). Then, for any fixed (a1, . . . , al) we have

P ((gk)T [m1, . . . ,ml] = [a1, . . . , al]) = 2−l.

To see this note that the system of linear equations (with gk unknown)

(gk)T [m1, . . . ,ml] = [a1, . . . , al]

always has 2k−l solutions. Hence, since gk is uniformly distributed we get

P ((gk)T [m1, . . . ,ml] = [a1, . . . , al]) =
2k−l

2k
= 2−l.

Hence, the codewords corresponding to m1, . . . ,ml are statistically independent and uniformly
distributed over Fn2 . Hence,

Pr
[
∃m1, . . . ,mL+1 ∈ FnR2 ,y ∈ Fn2 : c(m1), . . . , c(mL+1) ∈ B(y, np)

]
≤ Pr

[
∃ linearly independent m1, . . . ,ml ∈ FnR2 ,y ∈ Fn2 : c(m1), . . . , c(ml) ∈ B(y, np)

]
For any fixed set of linearly independent m1, . . . ,ml, and any y,

Pr[c(m1), . . . , c(ml) ∈ B(y, np)] ≤ 2nl(1−H(p)−o(1)).

There are at most
(
2nR

l

)
sets of l linearly independent messages. Using this, and taking union

bound over the messages and y’s gives us the result.
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Exercise 2 (List decoding from erasures). We say that a code is (p, L)-erasure list-decodable if for
any vector y ∈ {0, 1, ∗}n (where ∗ denotes the erasure symbol) with at most pn erasures, there are
at most L codewords that agree with y in the unerased positions. For any vector c and T ⊂ [n], let
cT denote the restriction of c to T , i.e., it is the |T |-length vector (ci : i ∈ T ). Formally, a code
C ⊂ Fn2 is (p, L)-erasure list-decodable if for every T ⊂ [n] with |T | ≥ (1− p)n, and y′ ∈ {0, 1}|T |,
we have

|{c ∈ C : cT = y′}| ≤ L.

Prove the following:

1. If C has minimum distance d, then it is
(
d−1
n
, 1
)
-list decodable.

2. For every ε > 0, there exists a (p, L)-erasure list decodable code of rate

R ≥ L

L+ 1
(1− p)− H(p)

L+ 1
− ε

Hint: Use random codes. For a fixed T,y′, compute the probability that the codeword for a
fixed message is equal to y when restricted to T . Do this for L + 1 messages. Then take a
union bound over messages, y’, and T .

3. Show that if a code of rate 1− p+ ε is (p, L)-erasure list-decodable, then L = 2Ω(n).

Solution. 1. If the minimum distance of a code is d, then it can correct every pattern of at most
d− 1 erasures. Hence, it is (d−1

n
, 1)-list decodable.

2. Define A(y′, T ) , {x ∈ Fn2 : xT = y′}. We need to show that

Pr
C
[∃T,y′ : |C ∩ A(y′, T )| ≥ L+ 1] = o(1).

Fix T,y′. Let |T | = t. For any message m,

Pr[c(m) ∈ A(y′, T )] = 1

2t
,

and for any fixed set of L+ 1 messages

Pr[c(m1), . . . , c(mL+1) ∈ A(y′, T )] =
1

2t(L+1)
.

Taking union bound over message sets, T and y′,

Pr
C
[∃T,y′ : |C ∩ A(y′, T )| ≥ L+ 1] = Pr

C
[∃T, |T | = n(1− p),y′ : |C ∩ A(y′, T )| ≥ L+ 1]

≤
(
n
np

)
2n(1−p)

(
2nR

L+ 1

)
1

2n(1−p)(L+1)

≤ 2n(H(p)+1−p) 2nR(L+1) 2−n(1−p)(L+1),

which is o(1) if R ≥ L
L+1

(1− p)− H(p)
L+1
− ε.

Reference: V. Guruswami: List Decoding of Error-Correcting Codes, LNCS 3282, pp. 251-277, 2004.
https://link.springer.com/content/pdf/10.1007%2F978-3-540-30180-6_10.pdf
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3. Suppose C is any code of rate 1−p+ε and minimum list size L. Choose T to be a fixed subset
of [n] having size n(1−p), and y′ a random vector of length n(1−p) with i.i.d. Bernoulli(1/2)
components. Fix any codeword c ∈ C. This is in A(y′, T ) if cT = y′. Hence,

Pr
y
[c ∈ A(y′, T )] = 1

2n(1−p) .

Let ξ =
∑

c∈C 1{c∈A(y′,T )} be the number of codewords in A(y′, T ) ∩ C. Then,

Ey′ [ξ] =
∑
c∈C

Pr[c ∈ A(y′, T )] = 2nR/2n(1−p) = 2nε.

Therefore, there exists at least one y′ such that |A(y′, T ) ∩ C| ≥ 2nε.
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