Telecom Paris

SOLUTIONS TO ASSIGNMENT 5

Exercise 1 (List decodability of linear codes). Show that with high probability, a random (binary) linear code obtained by choosing an $nR \times n$ generator matrix uniformly at random is (p, L)-list decodable as long as

$$R \le 1 - H(p) - \frac{1}{\lceil \log_2(L+1) \rceil}.$$

Hint: Argue that any set of L+1 vectors in \mathbb{F}_2^k contains at least $\lceil \log_2(L+1) \rceil$ linearly independent vectors. If two messages are linearly independent, then what can you say about the corresponding codewords of the random linear code?

Solution. Let $B(\mathbf{y}, np) \triangleq \{\mathbf{x} \in \mathbb{F}_2^n : d(\mathbf{x}, \mathbf{y}) \leq np\}$ denote the Hamming ball of radius np. For a message $\mathbf{m} \in \mathbb{F}_2^{nR}$, let $\mathbf{c}(\mathbf{m})$ denote the corresponding codeword. It suffices to show that

$$\Pr\left[\exists \mathbf{m}_1, \dots, \mathbf{m}_{L+1} \in \mathbb{F}_2^{nR}, \mathbf{y} \in \mathbb{F}_2^n : \mathbf{c}(\mathbf{m}_1), \dots, \mathbf{c}(\mathbf{m}_{L+1}) \in B(\mathbf{y}, np)\right] = o(1).$$

A set of l linearly independent vectors in \mathbb{F}_2^k spans a space of size 2^l . Now, consider a set \mathcal{S} of vectors and let $l(\mathcal{S})$ denote the maximal number of independent vectors of \mathcal{S} . Since a maximal set spans \mathcal{S} , it must be the case that $2^{l(\mathcal{S})} \geq |\mathcal{S}|$, or $l(\mathcal{S}) \geq \log_2 |\mathcal{S}|$. Therefore, any set of L+1 messages contains a linearly independent set of size greater than or equal to $\lceil \log_2(L+1) \rceil$. Define $l \triangleq \lceil \log_2(L+1) \rceil$.

Now, let $\mathbf{m}_1, \dots, \mathbf{m}_l$ denote l linearly independent messages. Let g^k denote a column of the generator matrix (this column is randomly generated). Then, for any fixed (a_1, \dots, a_l) we have

$$P((g^k)^T[\mathbf{m}_1,\ldots,\mathbf{m}_l] = [a_1,\ldots,a_l]) = 2^{-l}.$$

To see this note that the system of linear equations (with g^k unknown)

$$(g^k)^T[\mathbf{m}_1,\ldots,\mathbf{m}_l]=[a_1,\ldots,a_l]$$

always has 2^{k-l} solutions. Hence, since g^k is uniformly distributed we get

$$P((g^k)^T[\mathbf{m}_1,\ldots,\mathbf{m}_l] = [a_1,\ldots,a_l]) = \frac{2^{k-l}}{2^k} = 2^{-l}.$$

Hence, the codewords corresponding to $\mathbf{m}_1, \dots, \mathbf{m}_l$ are statistically independent and uniformly distributed over \mathbb{F}_2^n . Hence,

$$\Pr\left[\exists \mathbf{m}_1, \dots, \mathbf{m}_{L+1} \in \mathbb{F}_2^{nR}, \mathbf{y} \in \mathbb{F}_2^n : \mathbf{c}(\mathbf{m}_1), \dots, \mathbf{c}(\mathbf{m}_{L+1}) \in B(\mathbf{y}, np)\right] \\ \leq \Pr\left[\exists \text{ linearly independent } \mathbf{m}_1, \dots, \mathbf{m}_l \in \mathbb{F}_2^{nR}, \mathbf{y} \in \mathbb{F}_2^n : \mathbf{c}(\mathbf{m}_1), \dots, \mathbf{c}(\mathbf{m}_l) \in B(\mathbf{y}, np)\right]$$

For any fixed set of linearly independent $\mathbf{m}_1, \dots, \mathbf{m}_l$, and any \mathbf{y} ,

$$\Pr[\mathbf{c}(\mathbf{m}_1), \dots, \mathbf{c}(\mathbf{m}_l) \in B(\mathbf{y}, np)] \le 2^{nl(1 - H(p) - o(1))}.$$

There are at most $\binom{2^{nR}}{l}$ sets of l linearly independent messages. Using this, and taking union bound over the messages and y's gives us the result.

Exercise 2 (List decoding from erasures). We say that a code is (p, L)-erasure list-decodable if for any vector $\mathbf{y} \in \{0, 1, *\}^n$ (where * denotes the erasure symbol) with at most pn erasures, there are at most L codewords that agree with \mathbf{y} in the unerased positions. For any vector \mathbf{c} and $T \subset [n]$, let \mathbf{c}_T denote the restriction of \mathbf{c} to T, i.e., it is the |T|-length vector $(c_i : i \in T)$. Formally, a code $\mathcal{C} \subset \mathbb{F}_2^n$ is (p, L)-erasure list-decodable if for every $T \subset [n]$ with $|T| \geq (1-p)n$, and $\mathbf{y}' \in \{0, 1\}^{|T|}$, we have

$$|\{\mathbf{c} \in \mathcal{C} : \mathbf{c}_T = \mathbf{y}'\}| < L.$$

Prove the following:

- 1. If \mathcal{C} has minimum distance d, then it is $\left(\frac{d-1}{n},1\right)$ -list decodable.
- 2. For every $\epsilon > 0$, there exists a (p, L)-erasure list decodable code of rate

$$R \ge \frac{L}{L+1}(1-p) - \frac{H(p)}{L+1} - \epsilon$$

Hint: Use random codes. For a fixed T, \mathbf{y}' , compute the probability that the codeword for a fixed message is equal to \mathbf{y} when restricted to T. Do this for L+1 messages. Then take a union bound over messages, \mathbf{y}' , and T.

3. Show that if a code of rate $1 - p + \epsilon$ is (p, L)-erasure list-decodable, then $L = 2^{\Omega(n)}$.

Solution. 1. If the minimum distance of a code is d, then it can correct every pattern of at most d-1 erasures. Hence, it is $(\frac{d-1}{n},1)$ -list decodable.

2. Define $A(\mathbf{y}',T) \triangleq \{\mathbf{x} \in \mathbb{F}_2^n : \mathbf{x}_T = \mathbf{y}'\}$. We need to show that

$$\Pr_{\mathcal{C}}[\exists T, \mathbf{y}' : |\mathcal{C} \cap A(\mathbf{y}', T)| \ge L + 1] = o(1).$$

Fix T, \mathbf{y}' . Let |T| = t. For any message \mathbf{m} ,

$$\Pr[\mathbf{c}(\mathbf{m}) \in A(\mathbf{y}', T)] = \frac{1}{2^t},$$

and for any fixed set of L + 1 messages

$$\Pr[\mathbf{c}(\mathbf{m}_1),\ldots,\mathbf{c}(\mathbf{m}_{L+1})\in A(\mathbf{y}',T)]=\frac{1}{2^{t(L+1)}}.$$

Taking union bound over message sets, T and y',

$$\Pr_{\mathcal{C}}[\exists T, \mathbf{y}' : |\mathcal{C} \cap A(\mathbf{y}', T)| \ge L + 1] = \Pr_{\mathcal{C}}[\exists T, |T| = n(1 - p), \mathbf{y}' : |\mathcal{C} \cap A(\mathbf{y}', T)| \ge L + 1] \\
\le \binom{n}{np} 2^{n(1-p)} \binom{2^{nR}}{L+1} \frac{1}{2^{n(1-p)(L+1)}} \\
\le 2^{n(H(p)+1-p)} 2^{nR(L+1)} 2^{-n(1-p)(L+1)},$$

which is
$$o(1)$$
 if $R \ge \frac{L}{L+1}(1-p) - \frac{H(p)}{L+1} - \epsilon$.

Reference: V. Guruswami: List Decoding of Error-Correcting Codes, LNCS 3282, pp. 251-277, 2004. https://link.springer.com/content/pdf/10.1007%2F978-3-540-30180-6_10.pdf

3. Suppose \mathcal{C} is any code of rate $1-p+\epsilon$ and minimum list size L. Choose T to be a fixed subset of [n] having size n(1-p), and \mathbf{y}' a random vector of length n(1-p) with i.i.d. Bernoulli(1/2) components. Fix any codeword $\mathbf{c} \in \mathcal{C}$. This is in $A(\mathbf{y}',T)$ if $\mathbf{c}_T = \mathbf{y}'$. Hence,

$$\Pr_{\mathbf{y}}[\mathbf{c} \in A(\mathbf{y}', T)] = \frac{1}{2^{n(1-p)}}.$$

Let $\xi = \sum_{\mathbf{c} \in \mathcal{C}} 1_{\{\mathbf{c} \in A(\mathbf{y}',T)\}}$ be the number of codewords in $A(\mathbf{y}',T) \cap \mathcal{C}$. Then,

$$\mathbb{E}_{\mathbf{y}'}[\xi] = \sum_{\mathbf{c} \in \mathcal{C}} \Pr[\mathbf{c} \in A(\mathbf{y}', T)] = 2^{nR} / 2^{n(1-p)} = 2^{n\epsilon}.$$

Therefore, there exists at least one \mathbf{y}' such that $|A(\mathbf{y}',T) \cap \mathcal{C}| \geq 2^{n\epsilon}$.