Telecom Paris ACCQ204, Coding Theory

ASSIGNMENT 4

Exercise 1. Show that if C,,;, = [N, K, D] and C;, = [n,k,d] are linear block codes, then the
concatenated code C,,; o Cj, is a linear block code [nN, kK, D'] where D' > dD.

Exercise 2 (Zyablov bound). We will show a low complexity procedure based on code concatenation
to design an explicit code which achieves R > 0,6 > 0. By low complexity we mean subexponential
in the block length.

From Exercise 6 Assignment 2 there exists linear codes over [q] whose asymptotic rate r =

lim,, oo @ and relative minimum distance § = lim,,_,« @ satisfy the GV bound

r>1— Hy6).
1. Argue that to find a length n code whose rate and relative minimum distance satisfy the
r>1—H,/(6) —¢

it takes ¢®*™) time, as opposed to ¢°@" time if the code has no structure. Hint: how many

generator matrices are there with paramters k, n?

2. Consider concatenating a linear code approaching the GV bound (inner code) and a Reed
Solomon code (outer code). Show that such a construction yields an asymptotic rate

)
> 1-—
R (1= o )

for any € > 0, where ¢ represents the relative minimum distance of the concatenated code and
where r denotes the rate of the inner code. This bound is called the Zyablov bound.

3. Plot the Zyablov bound and the GV bound (rate as a function of relative minimum distance).

4. Argue that it is possibe to construct an explicit code achieving the Zyablov bound with time
complexity N©1°gN) where A/ denotes the length of the concatenated code.

Hence, although the Zyablov bound is lower than the GV bound, it is easier to construct a code
that achieves the Zyablov bound (by concatenation) than to construct a linear code achieving
the GV bound (which takes O(¢"") time).

Exercise 3 (Binary symmetric channel). Let us examine the performance of linear codes against
random errors. The binary symmetric channel with crossover probability p < 1/2 is defined by the
following process: Given a codeword ¢ € [F}, we generate a random vector y where y; is obtained
by flipping ¢; with probability p, independently of everything else. Equivalently,

y=c+z,



where z is a random vector whose components are independent and follow a Bernoulli(p)
distribution. Here y is called the received vector, and z the noise vector.

We will measure the performance of a code C C F% of size 2" using the average probability of
error under a minimum distance decoder DEC(y) = arg mineec d(y, c):

P.C) = 51 S PrA¢ € C\{e} : DEC(y) = ¢!

ceC

_ 2% > Prfac € C\{e} : d(y, ¢) < dly,c)),

ceC

where d(-, -) denotes Hamming distance. This is the average probability that there exists a codeword
different from c, that is closer to the received vector.

The goal of this and the next exercise is to show that for every € > 0 there exist linear codes of
rate R = 1 — H(p) — e whose probability of error is 27",

1. First, show that the Hamming distance between y and c is approximately np:
Pr[d(c,y) > np(1 + €/2)] < 279

Hint: Find the probability that z has Hamming weight greater than np(1 + €/2). You can use
Chernoff bound, or directly compute the probability and then use Stirling’s approximation.

2. Next, show that the probability of error can be bounded from above as P,(C) < PO+ PP,
where

PO — QHLR > PrEc € C\{c} : d(y, &) < np(1 + ¢/2)]

ceC

and
P = Prld(c,y) > np(1 + ¢/2)] <279

3. Let us now find the probability of error for a random linear code obtained by choosing a
generator matrix GG uniformly. Show that for any two nonzero message vectors u; # U, the
corresponding codeword u; G’ and u,G are statistically independent.

4. For fixed messages u; # u,, show that

Pr [d(m@ WG +2z) < np(1+ 6/2)] < 9-n(1=H(p(1+¢/2))+o(1))

Hint: First compute Prg [d(ulG, x) < np(1+ 6/2)} for a fixed x € F5. Then average over
z.

5. Use part 4 to show thatif R < 1 — H(p) — ¢, then P{*) = 2-m.

6. Combine everything to prove that there exists a linear code with rate R > 1 — H(p) — € and
P. = o(1).



