

ASSIGNMENT 4

Exercise 1. Show that if $C_{out} = [N, K, D]$ and $C_{in} = [n, k, d]$ are linear block codes, then the concatenated code $C_{out} \circ C_{in}$ is a linear block code $[nN, kK, D']$ where $D' \geq dD$.

Exercise 2 (Zyablov bound). We will show a low complexity procedure based on code concatenation to design an explicit code which achieves $R > 0, \delta > 0$. By low complexity we mean subexponential in the block length.

From Exercise 6 Assignment 2 there exists linear codes over $[q]$ whose asymptotic rate $r = \lim_{n \rightarrow \infty} \frac{k(n)}{n}$ and relative minimum distance $\delta = \lim_{n \rightarrow \infty} \frac{d(n)}{n}$ satisfy the GV bound

$$r \geq 1 - H_q(\delta).$$

1. Argue that to find a length n code whose rate and relative minimum distance satisfy the

$$r \geq 1 - H_q(\delta) - \varepsilon$$

it takes $q^{O(kn)}$ time, as opposed to $q^{O(q^k n)}$ time if the code has no structure. Hint: how many generator matrices are there with parameters k, n ?

2. Consider concatenating a linear code approaching the GV bound (inner code) and a Reed Solomon code (outer code). Show that such a construction yields an asymptotic rate

$$\mathcal{R} \geq \sup_{r \geq 0} r \left(1 - \frac{\delta}{H_q^{-1}(1 - r - \varepsilon)} \right)$$

for any $\varepsilon > 0$, where δ represents the relative minimum distance of the concatenated code and where r denotes the rate of the inner code. This bound is called the Zyablov bound.

3. Plot the Zyablov bound and the GV bound (rate as a function of relative minimum distance).
4. Argue that it is possible to construct an explicit code achieving the Zyablov bound with time complexity $\mathcal{N}^{\mathcal{O}(\log \mathcal{N})}$ where \mathcal{N} denotes the length of the concatenated code.

Hence, although the Zyablov bound is lower than the GV bound, it is easier to construct a code that achieves the Zyablov bound (by concatenation) than to construct a linear code achieving the GV bound (which takes $O(q^N)$ time).

Exercise 3 (Binary symmetric channel). Let us examine the performance of linear codes against random errors. The binary symmetric channel with crossover probability $p < 1/2$ is defined by the following process: Given a codeword $\mathbf{c} \in \mathbb{F}_2^n$, we generate a random vector \mathbf{y} where y_i is obtained by flipping c_i with probability p , independently of everything else. Equivalently,

$$\mathbf{y} = \mathbf{c} + \mathbf{z},$$

where \mathbf{z} is a random vector whose components are independent and follow a Bernoulli(p) distribution. Here \mathbf{y} is called the received vector, and \mathbf{z} the noise vector.

We will measure the performance of a code $\mathcal{C} \subset \mathbb{F}_2^n$ of size 2^{nR} using the *average probability of error* under a minimum distance decoder $\text{DEC}(\mathbf{y}) = \arg \min_{\mathbf{c} \in \mathcal{C}} d(\mathbf{y}, \mathbf{c})$:

$$\begin{aligned} P_e(\mathcal{C}) &= \frac{1}{2^{nR}} \sum_{\mathbf{c} \in \mathcal{C}} \Pr_{\mathbf{z}} [\exists \mathbf{c}' \in \mathcal{C} \setminus \{\mathbf{c}\} : \text{DEC}(\mathbf{y}) = \mathbf{c}'] \\ &= \frac{1}{2^{nR}} \sum_{\mathbf{c} \in \mathcal{C}} \Pr_{\mathbf{z}} [\exists \mathbf{c}' \in \mathcal{C} \setminus \{\mathbf{c}\} : d(\mathbf{y}, \mathbf{c}') \leq d(\mathbf{y}, \mathbf{c})], \end{aligned}$$

where $d(\cdot, \cdot)$ denotes Hamming distance. This is the average probability that there exists a codeword different from \mathbf{c} , that is closer to the received vector.

The goal of this and the next exercise is to show that for every $\epsilon > 0$ there exist linear codes of rate $R = 1 - H(p) - \epsilon$ whose probability of error is $2^{-\Omega(n)}$.

1. First, show that the Hamming distance between \mathbf{y} and \mathbf{c} is approximately np :

$$\Pr[d(\mathbf{c}, \mathbf{y}) > np(1 + \epsilon/2)] \leq 2^{-\Omega(n)}$$

Hint: Find the probability that \mathbf{z} has Hamming weight greater than $np(1 + \epsilon/2)$. You can use Chernoff bound, or directly compute the probability and then use Stirling's approximation.

2. Next, show that the probability of error can be bounded from above as $P_e(\mathcal{C}) \leq P_e^{(1)} + P_e^{(2)}$, where

$$P_e^{(1)} = \frac{1}{2^{nR}} \sum_{\mathbf{c} \in \mathcal{C}} \Pr_{\mathbf{z}} [\exists \mathbf{c}' \in \mathcal{C} \setminus \{\mathbf{c}\} : d(\mathbf{y}, \mathbf{c}') \leq np(1 + \epsilon/2)]$$

and

$$P_e^{(2)} = \Pr[d(\mathbf{c}, \mathbf{y}) > np(1 + \epsilon/2)] \leq 2^{-\Omega(n)}$$

3. Let us now find the probability of error for a random linear code obtained by choosing a generator matrix G uniformly. Show that for any two nonzero message vectors $\mathbf{u}_1 \neq \mathbf{u}_2$, the corresponding codeword $\mathbf{u}_1 G$ and $\mathbf{u}_2 G$ are statistically independent.
4. For fixed messages $\mathbf{u}_1 \neq \mathbf{u}_2$, show that

$$\Pr_{G, \mathbf{z}} \left[d(\mathbf{u}_1 G, \mathbf{u}_2 G + \mathbf{z}) < np(1 + \epsilon/2) \right] \leq 2^{-n(1 - H(p(1 + \epsilon/2)) + o(1))}$$

Hint: First compute $\Pr_G \left[d(\mathbf{u}_1 G, \mathbf{x}) < np(1 + \epsilon/2) \right]$ for a fixed $\mathbf{x} \in \mathbb{F}_2^n$. Then average over \mathbf{z} .

5. Use part 4 to show that if $R < 1 - H(p) - \epsilon$, then $P_e^{(2)} = 2^{-\Omega(n)}$.
6. Combine everything to prove that there exists a linear code with rate $R \geq 1 - H(p) - \epsilon$ and $P_e = o(1)$.