
Telecom Paris ACCQ204, Coding Theory

ASSIGNMENT 4
Exercise 1. Show that if Cout = [N,K,D] and Cin = [n, k, d] are linear block codes, then the
concatenated code Cout ◦ Cin is a linear block code [nN, kK,D′] where D′ ≥ dD.

Exercise 2 (Zyablov bound). We will show a low complexity procedure based on code concatenation
to design an explicit code which achievesR > 0, δ > 0. By low complexity we mean subexponential
in the block length.

From Exercise 6 Assignment 2 there exists linear codes over [q] whose asymptotic rate r =

limn→∞
k(n)
n

and relative minimum distance δ = limn→∞
d(n)
n

satisfy the GV bound

r ≥ 1−Hq(δ).

1. Argue that to find a length n code whose rate and relative minimum distance satisfy the

r ≥ 1−Hq(δ)− ε

it takes qO(kn) time, as opposed to qO(qkn) time if the code has no structure. Hint: how many
generator matrices are there with paramters k, n?

2. Consider concatenating a linear code approaching the GV bound (inner code) and a Reed
Solomon code (outer code). Show that such a construction yields an asymptotic rate

R ≥ sup
r≥0

r

(
1− δ

H−1
q (1− r − ε)

)
for any ε > 0, where δ represents the relative minimum distance of the concatenated code and
where r denotes the rate of the inner code. This bound is called the Zyablov bound.

3. Plot the Zyablov bound and the GV bound (rate as a function of relative minimum distance).

4. Argue that it is possibe to construct an explicit code achieving the Zyablov bound with time
complexity NO(logN ) where N denotes the length of the concatenated code.

Hence, although the Zyablov bound is lower than the GV bound, it is easier to construct a code
that achieves the Zyablov bound (by concatenation) than to construct a linear code achieving
the GV bound (which takes O(qN ) time).

Exercise 3 (Binary symmetric channel). Let us examine the performance of linear codes against
random errors. The binary symmetric channel with crossover probability p < 1/2 is defined by the
following process: Given a codeword c ∈ Fn2 , we generate a random vector y where yi is obtained
by flipping ci with probability p, independently of everything else. Equivalently,

y = c+ z,

1



where z is a random vector whose components are independent and follow a Bernoulli(p)
distribution. Here y is called the received vector, and z the noise vector.

We will measure the performance of a code C ⊂ Fn2 of size 2nR using the average probability of
error under a minimum distance decoder DEC(y) = argminc∈C d(y, c):

Pe(C) =
1

2nR

∑
c∈C

Pr
z
[∃c′ ∈ C\{c} : DEC(y) = c′]

=
1

2nR

∑
c∈C

Pr
z
[∃c′ ∈ C\{c} : d(y, c′) ≤ d(y, c)],

where d(·, ·) denotes Hamming distance. This is the average probability that there exists a codeword
different from c, that is closer to the received vector.

The goal of this and the next exercise is to show that for every ε > 0 there exist linear codes of
rate R = 1−H(p)− ε whose probability of error is 2−Ω(n).

1. First, show that the Hamming distance between y and c is approximately np:

Pr[d(c,y) > np(1 + ε/2)] ≤ 2−Ω(n)

Hint: Find the probability that z has Hamming weight greater than np(1 + ε/2). You can use
Chernoff bound, or directly compute the probability and then use Stirling’s approximation.

2. Next, show that the probability of error can be bounded from above as Pe(C) ≤ P
(1)
e + P

(2)
e ,

where
P (1)
e =

1

2nR

∑
c∈C

Pr
z
[∃c′ ∈ C\{c} : d(y, c′) ≤ np(1 + ε/2)]

and
P (2)
e = Pr[d(c,y) > np(1 + ε/2)] ≤ 2−Ω(n)

3. Let us now find the probability of error for a random linear code obtained by choosing a
generator matrix G uniformly. Show that for any two nonzero message vectors u1 6= u2, the
corresponding codeword u1G and u2G are statistically independent.

4. For fixed messages u1 6= u2, show that

Pr
G,z

[
d(u1G,u2G+ z) < np(1 + ε/2)

]
≤ 2−n(1−H(p(1+ε/2))+o(1))

Hint: First compute PrG

[
d(u1G,x) < np(1 + ε/2)

]
for a fixed x ∈ Fn2 . Then average over

z.

5. Use part 4 to show that if R < 1−H(p)− ε, then P (2)
e = 2−Ω(n).

6. Combine everything to prove that there exists a linear code with rate R ≥ 1 −H(p) − ε and
Pe = o(1).
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