

SOLUTIONS TO ASSIGNMENT 6

Exercise 1 (Random graphs are good expanders). In this exercise, we will show the existence of good expander through a probabilistic method. Recall that a bipartite graph with n left vertices, m right vertices, and left degree D is an $(n, m, D, \gamma, D(1 - \varepsilon))$ expander if for all subsets \mathcal{S} of left vertices with $|\mathcal{S}| \leq \gamma n$, we have $|N(\mathcal{S})| > D(1 - \varepsilon)|\mathcal{S}|$ where $N(\mathcal{S})$ denotes the set of neighbours of \mathcal{S} .

We will prove the following theorem:

Theorem: Fix $0 < \varepsilon < 1$ and $n \geq m$ arbitrarily, let D be a large enough integer to satisfy (\log is to the base 2)

$$D \geq \frac{1}{\varepsilon} \left(\log\left(\frac{4e^2}{\varepsilon}\right) + \log D + \log\left(\frac{n}{m}\right) \right), \quad (1)$$

and let

$$\gamma = \frac{\varepsilon m}{2eDn}.$$

Then, there exist expander graphs with parameters $(n, m, D, \gamma, (1 - \varepsilon)D)$.

To prove the theorem, we pick a random bipartite graph $\mathcal{G} = (\mathcal{L}, \mathcal{R}, \mathcal{E})$ as follows. We let $|\mathcal{L}| = n$ and $|\mathcal{R}| = m$ and choose the edges in \mathcal{E} randomly as follows. For every vertex $\ell \in \mathcal{L}$ we pick D random vertices *with replacement* in \mathcal{R} and connect them to ℓ . Note that this implies that we can have multi-edges and so technically the vertices in \mathcal{L} need not be D -regular. We will fix this at the end(*). Let $1 \leq s \leq \lfloor \gamma n \rfloor$ be an integer and let $\mathcal{S} \subseteq \mathcal{L}$ be an arbitrary subset of size exactly s . We will argue that with the chosen parameters, the probability that $|N(\mathcal{S})| < D(1 - \varepsilon)s$ is small enough so that even after taking a union bound over all choices of s and \mathcal{S} , the probability that all sufficiently small sets expand by a factor of $D(1 - \varepsilon)$ is strictly larger than 0. This proves the existence of a graph with the desired properties.

Fix s and \mathcal{S} as above. Let $\mathcal{E}(\mathcal{S}) = \{e_1, e_2, \dots, e_{sD}\}$ be the sD random choices of edges departing the s vertices in \mathcal{S} . It may be helpful for concreteness to choose here a particular labeling order for the e_i 's, with say e_1, e_2, \dots, e_D corresponding to the edges of the top most vertex in \mathcal{S} , $e_{D+1}, e_{D+2}, \dots, e_{2D}$ corresponding to the second vertex in \mathcal{S} , and so on. Further, let $\{r_i\}$ denote the set of nodes in $N(\mathcal{S})$. Hence, each vertex in \mathcal{S} is connected through some edge e_i to some vertex $r_{j(i)}$ in $N(\mathcal{S})$. We call an edge e_i (for $i > 1$) a *repeat* if $r_{j(i)} \in \{r_{j(1)}, \dots, r_{j(i-1)}\}$. Note that if the total number of repeats is at most εsD , then $|N(\mathcal{S})| \geq D(1 - \varepsilon)s$. Thus, it suffices to show that the probability of more than εsD repeats is small.

1. Show that the probability that e_i ($i \geq 2$) is a repeat is at most

$$\frac{i-1}{m} \leq \frac{sD}{m}. \quad (2)$$

2. Using the same argument argue that

$$\Pr[\{e_{a_1}, e_{a_2}, \dots, e_{a_k}\} \text{ are repeats}] = \prod_{t=1}^k \Pr[e_{a_t} \text{ is a repeat} | e_{a_1}, \dots, e_{a_{t-1}} \text{ are repeats}] \leq \left(\frac{sD}{m}\right)^k \quad (3)$$

(with indices $1 \leq a_1 < a_2 < \dots < a_k \leq sD$).

3. Justify each step:

$$\begin{aligned} \Pr[\mathcal{E}(\mathcal{S}) \text{ contains at least } \varepsilon sD \text{ repeats}] &\leq \Pr[\mathcal{E}(\mathcal{S}) \text{ contains a subset of } \varepsilon sD \text{ repeats}] \\ &\leq \binom{Ds}{\varepsilon sD} \left(\frac{sD}{m}\right)^{\varepsilon sD} \end{aligned} \quad (4)$$

$$\leq \left(\frac{e}{\varepsilon}\right)^{\varepsilon sD} \left(\frac{sD}{m}\right)^{\varepsilon sD} \quad (5)$$

$$= \left(\frac{esD}{\varepsilon m}\right)^{\varepsilon sD} \quad (6)$$

$$= \left(\frac{s}{2\gamma n}\right)^{\varepsilon sD}. \quad (7)$$

4. By taking a union bound over all $\binom{n}{s}$ choices for \mathcal{S} , show that the probability that there exists some set \mathcal{S} of size s that does not expand by a factor of $D(1 - \varepsilon)$ is at most

$$\left(\frac{1}{2}\right)^s. \quad (8)$$

Hint: Use our bound on binomial, argue that $D\varepsilon > 1$ by assumption on D , and that $\left(\frac{en}{s}\right) \left(\frac{s}{2\gamma n}\right)^{\varepsilon D}$ is an increasing function of s , and thus that it suffices to check that this quantity is upper bounded by $1/2$ for $s = \gamma n$.

5. Conclude that the probability that G is not an $(n, m, D, \gamma, D(1 - \varepsilon))$ bipartite expander is strictly less than 1.

6. Recall that the random graph generation does not guarantee D regularity for left vertices since “for every vertex $\ell \in \mathcal{L}$ we pick D random vertices *with replacement* in \mathcal{R} and connect them to ℓ .” Consider now the slight variation in code generation where each left vertex is connected to a random subset of exactly D left vertices—in other words, each left vertex selects uniformly at random a subset of D right vertices as its neighbors. How does the analysis change?

Exercise 2 (Minimum distance). Let \mathcal{G} be an $(n, m, D, \gamma, D(1 - \varepsilon))$ be an expander graph for some $0 < \varepsilon < 1/2$. Given any set of left vertices \mathcal{S} , a right vertex v is said to be a unique neighbour of \mathcal{S} if it is adjacent to exactly one vertex in \mathcal{S} . Let $U(\mathcal{S})$ denote the set of unique neighbours of \mathcal{S} .

1. Fix any set of left vertices \mathcal{S} such that $|\mathcal{S}| \leq \gamma n$. How many edges leave \mathcal{S} ? Using this, compute an upper bound on the number of vertices in $N(\mathcal{S})$ that have more than one incident edge from \mathcal{S} .
2. Use the above to argue that $|U(\mathcal{S})| \geq D(1 - 2\varepsilon)|\mathcal{S}|$.
3. Use the second part to argue that the minimum distance of the corresponding expander code is at least γn .

Hint: Choose any nonzero codeword and label the left vertices by the codeword bits. Let \mathcal{S} be the support set of vertices labelled 1. What can you say about $U(\mathcal{S})$?

4. Using similar arguments (in particular by showing that $|U(\mathcal{S})| > 0$), conclude that the minimum distance is at least $2\gamma(1 - \epsilon)n$.

Hint: Assume that there exists $T \subset \mathcal{S}$ with $|T| = \gamma n$. Show that

$$|U(\mathcal{S})| \geq |U(T) - N(\mathcal{S} \setminus T)| > 0.$$

Exercise 3 (Encoding/decoding complexity of expander codes). Expander codes have low encoding and decoding complexity.

- What is the encoding complexity of an expander code?
- What is the computational complexity in each iteration of decoding an expander code? Justify first that it can be made $O(n^2)$, then improve your method to make it $O(n)$.