
Telecom Paris ACCQ204, Coding Theory

SOLUTIONS TO ASSIGNMENT 6
Exercise 1 (Random graphs are good expanders). In this exercise, we will show the existence of
good expander through a probabilistic method. Recall that a bipartite graph with n left vertices, m
right vertices, and left degree D is an (n,m,D, γ,D(1 − ε)) expander if for all subsets S of left
vertices with |S| ≤ γn, we have |N(S)| > D(1− ε)|S| where N(S) denotes the set of neighbours
of S.

We will prove the following theorem:
Theorem: Fix 0 < ε < 1 and n ≥ m arbitrarily, let D be a large enough integer to satisfy (log is to
the base 2)

D ≥ 1

ε

(
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(4e2
ε

)
+ logD + log

( n
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))
, (1)

and let
γ =

εm

2eDn
.

Then, there exist expander graphs with parameters (n,m,D, γ, (1− ε)D).
To prove the theorem, we pick a random bipartite graph G = (L,R, E) as follows. We let

|L| = n and |R| = m and choose the edges in E randomly as follows. For every vertex ` ∈ L we
pick D random vertices with replacement in R and connect them to `. Note that this implies that
we can have multi-edges and so technically the vertices in L need not be D-regular. We will fix
this at the end(*). Let 1 ≤ s ≤ bγnc be an integer and let S ⊆ L be an arbitrary subset of size
exactly s. We will argue that with the chosen parameters, the probability that |N(S)| < D(1− ε)s
is small enough so that even after taking a union bound over all choices of s and S, the probability
that all sufficiently small sets expand by a factor of D(1 − ε) is strictly larger than 0. This proves
the existence of a graph with the desired properties.

Fix s and S as above. Let E(S) = {e1, e2, . . . , esD} be the sD random choices of edges
departing the s vertices in S. It may be helpful for concreteness to choose here a particular labeling
order for the ei’s, with say e1, e2, . . . , eD corresponding to the edges of the top most vertex in S,
eD+1, eD+2, . . . , e2D corresponding to the second vertex in S, and so on. Further, let {ri} denote the
set of nodes in N(S). Hence, each vertex in S is connected through some edge ei to some vertex
rj(i) in N(S). We call an edge ei (for i > 1) a repeat if rj(i) ∈ {rj(1), . . . , rj(i−1)}. Note that if the
total number of repeats is at most εsD, then |N(S)| ≥ D(1− ε)s. Thus, it suffices to show that the
probability of more than εsD repeats is small.

1. Show that the probability that ei (i ≥ 2) is a repeat is at most

i− 1

m
≤ sD

m
. (2)

2. Using the same argument argue that

Pr[{ea1 , ea2 , . . . , eak} are repeats] =
k∏
t=1

Pr[eat is a repeat|ea1 , . . . , eat−1 are repeats] ≤
(
sD

m

)k
(3)

(with indices 1 ≤ a1 < a2 < . . . < ak ≤ sD).
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3. Justify each step:

Pr
[
E(S) containts at least εsD repeats

]
≤ Pr

[
E(S) contains a subset of εsD repeats

]
≤
(
Ds

εsD

)(
sD

m

)εsD
(4)

≤
(e
ε

)εsD (sD
m

)εsD
(5)

=

(
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)εsD
(6)

=

(
s

2γn

)εsD
. (7)

4. By taking a union bound over all
(
n
s

)
choices for S, show that the probability that there exists

some set S of size s that does not expand by a factor of D(1− ε) is at most(
1

2

)s
. (8)

Hint: Use our bound on binomial, argue that Dε > 1 by assumption on D, and that(
en
s

) (
s

2γn

)εD
is an increasing function of s, and thus that it suffices to check that this quantity

is upper bounded by 1/2 for s = γn.

5. Conclude that the probability that G is not an (n,m,D, γ,D(1 − ε)) bipartite expander is
strictly less than 1.

6. Recall that the random graph generation does not guaranteeD regularity for left verticies since
“for every vertex ` ∈ Lwe pickD random vertices with replacement inR and connect them to
`. ” Consider now the slight variation in code generation where each left vertex is connected to
a random subset of exactly D left vertices—in other words, each left vertex selects uniformly
at random a subset of D right vertices as its neighbors. How does the analysis change?

Exercise 2 (Minimum distance). Let G be an (n,m,D, γ,D(1− ε)) be an expander graph for some
0 < ε < 1/2. Given any set of left vertices S, a right vertex v is said to be a unique neighbour of S
if it is adjacent to exactly one vertex in S. Let U(S) denote the set of unique neighbours of S.

1. Fix any set of left vertices S such that |S| ≤ γn. How many edges leave S? Using this,
compute an upper bound on the number of vertices in N(S) that have more than one incident
edge from S.

2. Use the above to argue that |U(S)| ≥ D(1− 2ε)|S|.

3. Use the second part to argue that the minimum distance of the corresponding expander code
is at least γn.

Hint: Choose any nonzero codeword and label the left vertices by the codeword bits. Let S
be the support set of vertices labelled 1. What can you say about U(S)?
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4. Using similar arguments (in particular by showing that |U(S)| > 0), conclude that the
minimum distance is at least 2γ(1− ε)n.

Hint: Assume that there exists T ⊂ S with |T | = γn. Show that

|U(S)| ≥ |U(T )−N(S\T )| > 0.

Exercise 3 (Encoding/decoding complexity of expander codes). Expander codes have low encoding
and decoding complexity.

• What is the encoding complexity of an expander code?

• What is the computational complexity in each iteration of decoding an expander code? Justify
first that it can be made O(n2), then improve your method to make it O(n).

3


