Telecom Paris ACCQ204, Coding Theory

SOLUTIONS TO ASSIGNMENT 6

Exercise 1 (Random graphs are good expanders). In this exercise, we will show the existence of
good expander through a probabilistic method. Recall that a bipartite graph with n left vertices, m
right vertices, and left degree D is an (n,m, D,~, D(1 — ¢)) expander if for all subsets S of left
vertices with |S| < yn, we have |[N(S)| > D(1 — ¢)|S| where N(S) denotes the set of neighbours
of .

We will prove the following theorem:
Theorem: Fix 0 < ¢ < 1 and n > m arbitrarily, let D be a large enough integer to satisfy (log is to

the base 2)
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Then, there exist expander graphs with parameters (n,m, D,~, (1 — ¢)D).

To prove the theorem, we pick a random bipartite graph G = (£, R, ) as follows. We let
|£| = n and |R| = m and choose the edges in £ randomly as follows. For every vertex ¢ € L we
pick D random vertices with replacement in R and connect them to ¢. Note that this implies that
we can have multi-edges and so technically the vertices in £ need not be D-regular. We will fix
this at the end(*). Let 1 < s < [yn] be an integer and let S C L be an arbitrary subset of size
exactly s. We will argue that with the chosen parameters, the probability that |N(S)| < D(1 — ¢)s
is small enough so that even after taking a union bound over all choices of s and S, the probability
that all sufficiently small sets expand by a factor of D(1 — ¢) is strictly larger than 0. This proves
the existence of a graph with the desired properties.

Fix s and S as above. Let £(S) = {e1,ea,...,esp} be the sD random choices of edges
departing the s vertices in S. It may be helpful for concreteness to choose here a particular labeling
order for the ¢;’s, with say ey, es, ..., ep corresponding to the edges of the top most vertex in S,
€p+1,ED42, - - - , €2p corresponding to the second vertex in S, and so on. Further, let {r;} denote the
set of nodes in N(S). Hence, each vertex in S is connected through some edge e; to some vertex
;) in N(S). We call an edge e; (for i > 1) a repeat if rj;) € {rjq),..., ;-1 }. Note that if the
total number of repeats is at most esD, then |N(S)| > D(1 — ¢)s. Thus, it suffices to show that the
probability of more than £sD repeats is small.

1. Show that the probability that e; (z > 2) is a repeat is at most
1—1 sD
< —.
m m

2)

2. Using the same argument argue that
k <D\ *
Pri{ea,,€ay; - - -, €aq, } are repeats] = H Prle,, is arepeat|e,,, .. ., e,,_, are repeats] < (—)
m

t=1
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(withindices 1 < a1 < as < ... < a < sD).
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3. Justify each step:
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4. By taking a union bound over all (7;) choices for &, show that the probability that there exists
some set S of size s that does not expand by a factor of D(1 — ¢) is at most

1 S
<§) : ®)

Hint: Use our bound on binomial, argue that De > 1 by assumption on D, and that

eD
(%) (ﬁ) is an increasing function of s, and thus that it suffices to check that this quantity

is upper bounded by 1/2 for s = yn.

5. Conclude that the probability that G is not an (n,m, D, v, D(1 — ¢)) bipartite expander is
strictly less than 1.

6. Recall that the random graph generation does not guarantee D regularity for left verticies since
“for every vertex ¢ € L we pick D random vertices with replacement in R and connect them to
¢.” Consider now the slight variation in code generation where each left vertex is connected to
a random subset of exactly D left vertices—in other words, each left vertex selects uniformly
at random a subset of D right vertices as its neighbors. How does the analysis change?

Exercise 2 (Minimum distance). Let G be an (n, m, D,~, D(1 — €)) be an expander graph for some
0 < € < 1/2. Given any set of left vertices S, a right vertex v is said to be a unique neighbour of S
if it is adjacent to exactly one vertex in S. Let U(S) denote the set of unique neighbours of S.

1. Fix any set of left vertices S such that |S| < 7n. How many edges leave S? Using this,
compute an upper bound on the number of vertices in N (S) that have more than one incident
edge from S.

2. Use the above to argue that |U(S)| > D(1 — 2¢)|S].

3. Use the second part to argue that the minimum distance of the corresponding expander code
is at least yn.

Hint: Choose any nonzero codeword and label the left vertices by the codeword bits. Let &
be the support set of vertices labelled 1. What can you say about U(S)?
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4. Using similar arguments (in particular by showing that |U(S)| > 0), conclude that the
minimum distance is at least 27y(1 — €)n.

Hint: Assume that there exists 7' C S with |T'| = yn. Show that
[U(S)| = [U(T) = N(S\T)| > 0.
Exercise 3 (Encoding/decoding complexity of expander codes). Expander codes have low encoding
and decoding complexity.
e What is the encoding complexity of an expander code?

e What is the computational complexity in each iteration of decoding an expander code? Justify
first that it can be made O(n?), then improve your method to make it O(n).



