Telecom Paris ACCQ202, Information Theory

ASSIGNMENT 5

Define the differential entropy h(X) of a continuous random variable X with density f(x) as
o0
W) == [ fe)log ()i,
—0o0

if the integral exists. The conditional differential entropy h(X|Y) is defined analogously.
Exercise 1. Calculate the differential entropy for the following distributions:
a. Uniform distribution on [0, a], a > 0.
b. Gaussian distribution N(0, 0'2).
Is h(X) always non-negative? Provide a proof or a counterexample.
Exercise 2. (Scaling and translation) For ¢ a constant, how are h(cX ) and h(X + c) related to h(X)?

Exercise 3. (Relation to discrete entropy) Consider a random variable X with density f(z). Divide
the range of X into consecutive segments of length A. Assume that the density is continuous within
the segments. By the mean value theorem, there exists a value x; within each segment ¢ such that

(i+1)A
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Consider the quantized random variable X2, defined by X2 = z; if iA < X < (i + 1)A.
a. Calculate the (discrete) entropy H(X2).
b. Conclude that under suitable conditions!, as A — 0,
H(X?) +log A — h(X).
c. Interpret the result as: the entropy of an n-bit quantization of a continuous random variable X
is approximately h(X) + n by considering X ~ Unif [0, 1] and X ~ N(0,1).
Exercise 4. (KL divergence) Define the KL divergence between two densities f and g as

f(z)
(@) dzx.

a. Using Jensen’s inequality, prove that D(f||g) is always non-negative.

D(fllg) = / f(@)log

b. Show that for a random variable X ~ f with variance o2,

1
h(X) < 3 log 2mec?

with equality if and only if X is a Gaussian random variable with variance o2.

Hint — Calculate the KL divergence between f and the Gaussian density.

'If f(x)log f(x) is Riemann integrable



Exercise 5. (Mutual information) Define the mutual information between continuous random variables
X and Y with joint distribution fxy (z,y) and marginals fx(x) and fy (y) as

I(X;Y) = D(fxvlfx fr)-
a. Show that I(X;Y) = h(Y) — h(Y|X).

b. Consider independent random variables X and Z with Z ~ A(0,N) and E[X?] < P. Let
Y = X + Z. Show that

1 P
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C&  max  I(X;Y) 2og< +N> (1)

Hint — Prove the inequality (without the max) first and exhibit an example distribution of X
(Gaussian?) for which the inequality becomes an equality.

Exercise 6. (AEP for continuous random variables) Define the volume of a set A C R" as
Vol(A) = / dxidzy - - - dxy,.
A

For ¢ > 0 and any n, define the typical set A™ with respect to f(x) as follows:

1
Agn) = {(xla s 7:E7’L) : ’_1ng($17' . 'axn) - h(X)' < E} )
n
where f(z1,...,2n) = [} f(2).
a. Prove the following for a typical set.

1. P(A™) > 1 — ¢ for n sufficiently large.
2. Vol(A™) < an(h(X)+e),
3. Vol(AM™) > (1 — €)27(h(X)=9) for py sufficiently large.

b. Do the arguments above extend to joint distributions? Define the typical set AE”) with respect to

fxy (z,y) (with marginals fx and fy) as

AP {czn,y“) |- row et = n00)| < |- 1ow ) - o) <

Lo ey 070" - Y| < }

Prove the following: If (X", Y") ~ fx (") fy (y"), then
P(X",Y") € AM) < 97 nI(X5Y)=3¢)

c. If X; are drawn i.i.d. from a distribution f such that EX? < P — e where P — ¢ > 0, argue that

the probability of the event
1 n
Ey = {n 2 X? > P}
1=

goes to 0 as n — oo.



Exercise 7. (Achievability for Gaussian channels) Consider a time-discrete channel with output Y; at
time i, where Y; is the sum of the input X; and noise Z; independent of X; with Z; ~ i.i.d. N'(0, N).
If there is a power constraint, namely, for any codeword (z1, z2, . . ., x,) transmitted over the channel,

we require that
1 n
— Z z? < P.
s

Following the arguments in the proof of achievability in the discrete channel coding theorem (and the
previous exercise), show that the maximum rate of communication over this channel, R > C — ¢ for
every € > 0 where C'is as defined in (1).



