Telecom ParisTech Teacher: Aslan Tchamkerten

Telecom 202b, Coding Theory October 2021

ASSIGNMENT 3

Exercise 1. Suppose we are in \mathbb{F}_2 . Find

- 1. $gcd(X^4 + X^2 + 1, X^2 + 1)$
- 2. $gcd(X^6 + X^5 + X^3 + X + 1, X^4 + X^2 + 1)$
- 3. $gcd(X^6 + X^5 + X^3 + X + 1, X^4 + X^3 + X + 1)$

Exercise 2. Show that a Reed-Solomon code with 1 message symbol and n codeword symbols is an n times repetition code.

Exercise 3. Construct an RS(n=4,k=2) code. For the construction you may want to consider the irreducible polynomial X^2+X+1 over \mathbb{F}_2 and the evaluation points (to be justified) $\alpha_1=0$, $\alpha_2=1$, $\alpha_3=x$, $\alpha_4=x+1$.

Exercise 4. Consider the following mapping from $(\mathbb{F}_q)^k$ to $(\mathbb{F}_q)^{k+1}$. Let $(f_0, f_1, \ldots, f_{k-1})$ be any k-tuple over \mathbb{F}_q , and define the polynomial $f(x) = f_0 + f_1 x + \ldots + f_{k-1} x^{k-1}$ of degree less than k. Map $(f_0, f_1, \ldots, f_{k-1})$ to the (q+1)-tuple $(\{f(\alpha_i), \alpha_i \in \mathbb{F}_q\}, f_{k-1})$ —i.e., to the RS codeword corresponding to f(x), plus an additional component equal to f_{k-1} .

Show that the $q^k(q+1)$ -tuples generated by this mapping as the polynomial f(z) ranges over all q^k polynomials over \mathbb{F}_q of degree < k form a linear (n=q+1,k,d=n-k+1) MDS code over \mathbb{F}_q . [Hint: f(x) has degree < k-1 if and only if $f_{k-1}=0$.]

Exercise 5. Suppose we want to correct bursts of errors, that is error patterns that affect a certain number of consecutive bits. Suppose we are given an [n,k] RS code over \mathbb{F}_{2^t} . Show that this code yields a binary code which can correct any burst of $(\lfloor (n-k)\rfloor/2-1)t$ bits.