

ASSIGNMENT 3

Exercise 1. Is the code $C = \{000, 110, 011, 101\}$ MDS?

Exercise 2. Consider an $[n, k, d]$ MDS code over \mathbb{F}_q . Show that

1. the number of codewords of weight d is

$$N_d = \binom{n}{d} (q-1).$$

Hint. Pick a subset of $k-1$ coordinates and fix the corresponding values to zero. Pick any other coordinate and let the symbol value in this coordinate run through all q symbols in \mathbb{F}_q .

2. Show that the number of codewords of weight $d+1$ is

$$N_{d+1} = \binom{n}{d+1} \left((q^2-1) - \binom{d+1}{d} (q-1) \right).$$

Exercise 3. Suppose we are in \mathbb{F}_2 . Find

1. $\gcd(X^4 + X^2 + 1, X^2 + 1)$
2. $\gcd(X^6 + X^5 + X^3 + X + 1, X^4 + X^2 + 1)$
3. $\gcd(X^6 + X^5 + X^3 + X + 1, X^4 + X^3 + X + 1)$

Exercise 4. Show that a Reed-Solomon code with 2 message symbols and n codeword symbols is an n times repetition code.

Exercise 5. Construct an $RS(n=4, k=2)$ code. For the construction you may want to consider the irreducible polynomial $X^2 + X + 1$ over \mathbb{F}_2 and the evaluation points (to be justified) $\alpha_1 = 0$, $\alpha_2 = 1$, $\alpha_3 = x$, $\alpha_4 = x + 1$.

Exercise 6. Consider the following mapping from $(\mathbb{F}_q)^k$ to $(\mathbb{F}_q)^{k+1}$. Let $(f_0, f_1, \dots, f_{k-1})$ be any k -tuple over \mathbb{F}_q , and define the polynomial $f(x) = f_0 + f_1x + \dots + f_{k-1}x^{k-1}$ of degree less than k . Map $(f_0, f_1, \dots, f_{k-1})$ to the $(q+1)$ -tuple $(\{f(\alpha_i), \alpha_i \in \mathbb{F}_q\}, f_{k-1})$ —i.e., to the RS codeword corresponding to $f(x)$, plus an additional component equal to f_{k-1} .

Show that the $q^k(q+1)$ -tuples generated by this mapping as the polynomial $f(z)$ ranges over all q^k polynomials over \mathbb{F}_q of degree $< k$ form a linear $(n=q+1, k, d=n-k+1)$ MDS code over \mathbb{F}_q . [Hint: $f(x)$ has degree $< k-1$ if and only if $f_{k-1} = 0$.]

Exercise 7. Suppose we want to correct bursts of errors, that is error patterns that affect a certain number of consecutive bits. Suppose we are given an $[n, k]$ RS code over \mathbb{F}_{2^t} . Show that this code yields a binary code which can correct any burst of $(\lfloor (n-k) \rfloor / 2 - 1)t$ bits.

Exercise 8 (Secret sharing). Throughout, we let \mathcal{C} be a binary linear code of length n . We say that a codeword v' *covers* a codeword v if the non-zero components of v are a subset of the non-zero components of v' . A non-zero codeword v is said to be minimal if it covers no other codeword.

1. Let v' be a non-zero non-minimal codeword of \mathcal{C} . Argue that v' covers some minimal codeword which we denote as $v(1)$.
2. Argue that $v' - v(1)$ is another codeword with weight strictly less than v' .
3. Deduce that $v' - v(1) - v(2) - \dots - v(s) = 0$ for some minimal codewords $v(1), \dots, v(s)$.
4. Secret sharing: Let \mathcal{C} be an $[n, k]$ binary linear code. An information set \mathcal{I} is a set of k components whose values entirely specify any codeword (for instance, for an MDS code, any k components is an information set). Show that there always exists an information set that contains the first component, unless all codewords have their first component equal to zero.
5. Pick $v_1 \in \{0, 1\}$ uniformly at random, this will be our “secret”. Assign uniformly random values from $\{0, 1\}$ to all $k - 1$ components $v_j, j \in \mathcal{I} \setminus \{1\}$, independently of v_1 . From $\{v_j, j \in \mathcal{I}\}$ compute the full codeword $v = v_1, v_2, \dots, v_n$. Distribute digits v_2, v_3, \dots, v_n to $n - 1$ distinct persons.

We now provide secrecy analysis for this scheme and analyze the sets of persons that are able to recover the secret v_1 .

- (a) A set of t persons, with combined knowledge of $v_{j_1}, v_{j_2}, \dots, v_{j_t}$, represents a *critical set* if they can recover the secret v_1 without error, but any proper subset of these persons recovers the value of v_1 only with probability $1/2$. Show that if a set of t persons, with combined knowledge of $v_{j_1}, v_{j_2}, \dots, v_{j_t}$, represents a *critical set*, then

$$v_1 = v_{j_1} + \dots + v_{j_t} \pmod{2}.$$

Hint: consider the parity check matrix representation of \mathcal{C}

- (b) Deduce that the codeword with zeros everywhere except at positions 1 and $\{j_i, i = 1, \dots, t\}$ belongs to the dual code \mathcal{C}^\perp of \mathcal{C} .
- (c) Deduce that any critical set of persons corresponds to a minimal codeword in \mathcal{C}^\perp whose first component is a 1, and such that the persons indices correspond to the components of the non-zero entries of the codeword, after the first component.
- (d) We now illustrate the secret sharing scheme through an example. Consider the code whose parity-check matrix is

$$H = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

It can be checked that positions 1,2,4 form an information set. Fix the first digit of a codeword, v_1 , our secret, then choose the second and fourth positions uniformly at random, and compute the full codeword v . Give the digits in positions 2,3,4, and 5 to Alice, Bob, Carol, and David, respectively. What are the critical sets that can recover the secret v_1 ?