Telecom Paris ACCQ204, Coding Theory

SOLUTIONS TO ASSIGNMENT 6

Exercise 1 (Random graphs are good expanders). In this exercise, we will show the existence of
good expander through a probabilistic method. Recall that a bipartite graph with n left vertices, m
right vertices, and left degree D is an (n,m, D,~, D(1 — ¢)) expander if for all subsets S of left
vertices with |S| < yn, we have |[N(S)| > D(1 — ¢)|S| where N(S) denotes the set of neighbours
of .

We will prove the following theorem:
Theorem: Fix 0 < ¢ < 1 and n > m arbitrarily, let D be a large enough integer to satisfy (log is to

the base 2)
4e?

1
D > —(log(—> +log D +10g(£>), (1)
€ € m
and let
_em
7T %eDn’

Then, there exist expander graphs with parameters (n,m, D,~, (1 — ¢)D).

To prove the theorem, we pick a random bipartite graph G = (£, R,) as follows. We let
|£| = n and |R| = m and choose the edges in £ randomly as follows. For every vertex ¢ € L we
pick D random vertices with replacement in R and connect them to ¢. Note that this implies that
we can have multi-edges and so technically the vertices in £ need not be D-regular. We will fix
this at the end(*). Let 1 < s < [yn] be an integer and let S C L be an arbitrary subset of size
exactly s. We will argue that with the chosen parameters, the probability that |N(S)| < D(1 — ¢)s
is small enough so that even after taking a union bound over all choices of s and S, the probability
that all sufficiently small sets expand by a factor of D(1 — ¢) is strictly larger than 0. This proves
the existence of a graph with the desired properties.

Fix s and S as above. Let £(S) = {e1,ea,...,esp} be the sD random choices of edges
departing the s vertices in S. It may be helpful for concreteness to choose here a particular labeling
order for the ¢;’s, with say ey, es, ..., ep corresponding to the edges of the top most vertex in S,
€p+1,ED42, - - - , €2p corresponding to the second vertex in S, and so on. Further, let {r;} denote the
set of nodes in N(S). Hence, each vertex in S is connected through some edge e; to some vertex
;) in N(S). We call an edge e; (for i > 1) a repeat if rj;) € {rjq),..., ;-1 }. Note that if the
total number of repeats is at most esD, then |N(S)| > D(1 — ¢)s. Thus, it suffices to show that the
probability of more than £sD repeats is small.

1. Show that the probability that e; (z > 2) is a repeat is at most
1—1 sD
< —.
m m

2)

2. Argue that
k <D\
Pri{ea,,€ay; - - -, €aq, } are repeats] = H Prle,, is arepeat|e,,, .. ., e,,_, are repeats] < (—)
m

t=1
3)

(withindices 1 < a1 < as < ... < a < sD).

1

3. Justify each step:

) contains a subset of esD repeats|

()
i)
(esD) ©)

N (2%) ' @

4. By taking a union bound over all (;‘) choices for S, show that the probability that there exists
some set S of size s that does not expand by a factor of D(1 — ¢) is at most

1 S
i 8
(5) ®
5. Conclude that the probability that G is not an (n,m, D,~, D(1 — €)) bipartite expander is
strictly less than 1.

Pr[£(S) containts at least esD repeats|

VAN

IA

6. Recall that the random graph generation does not guarantee D regularity for left verticies since
“for every vertex ¢ € L we pick D random vertices with replacement in R and connect them to
¢.” Consider now the slight variation in code generation where each left vertex is connected to
a random subset of exactly D left vertices—in other words, each left vertex selects uniformly
at random a subset of D right vertices as its neighbors. How does the analysis change?

Solution. 1. The probability that e; (z > 2) is a repeat is at most

1—1 sD
< 2=
m m

(€))

To see this, note that the probability that e; is a repeat equals to the number of distinct vertices
in {r;u),7j(2),--.,"ju-1)} divided by m, which is at most (i — 1)/m. Further, since ¢ < sD,
we obtain the above bound, which is uniform in :.

2. Through a similar argument we have

k k
Pri{ea, . €ay; - - -, €q, } are repeats| = H Prle,, is arepeat|e,,, . . ., e,,_, are repeats] < (%)
t=1
(10)

(withindices 1 < a1 < as < ... < a < sD).

3. Hence,

Pr[£(S) containts at least esD repeats| < Pr[£(S) contains a subset of £sD repeats|
Ds\ (sD\"
< — 11
- (esD) (m) (h
esD esD
<(9) (Q) (12)
3 m
esD
_ (esD) (13)
em

esD
S
“ () 4

where (11) follows by a union bound over all possible locations of 7D repeats and by (10);

where (12) follows from the standard bound on binomial coefficients ((Z) < (“f) b); and where
(14) follows from the choice of v (indeed, 2eyn = em/ D).

4. Taking a union bound over all (;‘) choices for S, the probability that there exists some set S
of size s that does not expand by a factor of ¢(1 — ¢) is at most

n s \7” en\s [s\
) =(T) (= (15)
5 2yn 5 29n
1 S
<|= 16
(1) "
It remains to justify (16). This inequality is equivalent to showing that for every 1 < s < yn,
eD
en S 1
—) { =— < - 17
< s) (2771) -2 {17

Since €D > 1 by our choice of D (see (1)), the left-hand side is increasing in s, and thus it
suffices to check the case s = «yn. This holds provided that (log is to the base 2)

1 2 1 4e2D 1 4e?
D > _10g<_e) = —log(‘ n) = —<log<i> —I—logD+log<£>> (18)
€ ¥ £ em € £ m

which is condition (1).

5. Taking a union bound over all s < ~n, we conclude that the probability that G is not an
(n,m, D,~, D(1 — ¢)) bipartite expander is strictly less than 1.

6. To complete the proof, it remains to address (*), namely we need to show that it is possible
to generate an expander graph with the same parameters, which is also D-regular. Recall that
the random graph generation is such that “for every vertex ¢ € £ we pick D random vertices
with replacement in R and connect them to £. ” Consider now the slight variation where each
left vertex selects uniformly at random a subset of D right vertices as its neighbors. In doing
s0, (9) and (10) hold, and the rest of the proof remains the same.

3

Exercise 2 (Minimum distance). Let G be an (n, m, D,~, D(1 — €)) be an expander graph for some
0 < e < 1/2. Given any set of left vertices S, a right vertex v is said to be a unique neighbour of S
if it is adjacent to exactly one vertex in S. Let U(S) denote the set of unique neighbours of S.

1. Fix any set of left vertices S such that |S| < yn. How many edges leave S? Using this,
compute an upper bound on the number of vertices in N (S) that have more than one incident
edge from S.

2. Use the above to argue that |U(S)| > D(1 — 2¢)|S].

3. Use the second part to argue that the minimum distance of the corresponding expander code
is at least yn.

Hint: Choose any nonzero codeword and label the left vertices by the codeword bits. Let S
be the support set of vertices labelled 1. What can you say about U(S)?

4. Using similar arguments (in particular by showing that |U(S)| > 0), conclude that the
minimum distance is at least 27y(1 — €)n.

Hint: Assume that there exists 7' C S with |T'| = yn. Show that

U(S)| = [U(T) = N(S\T)| > 0.

Solution. 1. The number of edges leaving S is D|S|. Since the graph is an expander, S has at
least (1—¢€)D|S| neighbours. Since there are D|S| edges, by the pigeonhole principle, at most
eD|S| neighbours of S can have more than one incident edge from S.

2. Shasatleast (1—¢)D|S| neighbours, of which at most e D|S| can have more than one incident
edge from S. Therefore, |U(S)| > (1 — 2¢)D|S| > 0 since ¢ < 1/2.

3. Suppose by contradiction, that the minimum distance is < yn. Since this is a linear code,
this means that the minimum codeword weight is < yn. Now pick a codword with minimum
weight and let S be the its support, that is the set of vertices labelled 1. Since this is a valid
codeword, U(S) should be empty—this is because any check node in U(S), has only one
neighbor in S, hence the equation of this check node cannot be satisfied if U(S) is non-empty.
However, 2. tells us that |U(S)| > 0. By contradiction this implies that |S| is too small to be
the support of a valid codeword. Hence, the minimum distance is at least yn.

4. See Theorem 11.3.4 in the textbook.

Exercise 3 (Encoding/decoding complexity of expander codes). Expander codes have low encoding
and decoding complexity.

e What is the encoding complexity of an expander code?

e What is the computational complexity in each iteration of decoding an expander code? Justify
first that it can be made O(n?), then improve your method to make it O(n).

Solution. 1. An expander code is linear. Hence, the encoding complexity is O(n?).

2. In each iteration, we need to find a left vertex which has more unsatisfied neighbours than
satisfied ones, and also update the parities at the right vertices. The complexity is O(n).

At each iteration the bit-flipping algorithm takes O(n) time to find a variable with a number
of violated clauses larger than the number of correct clauses. At each step the total number
of violated clauses decreases by at least one. Hence, the total number of steps is O(m) and
hence the overall decoding complexity is O(nm).

Let us improve this method by improving upon the search at each iteration. For this argument
we are going to assume that the maximum right degree is bounded by a constant 7.

e Preprocessing step: compute the value at each check — O(m - r), compute at each
variable the number of satisfied/unsatisfied clauses and produce the list £ of variables
with more unsatisfied clauses than satisfied clauses — O(n - D).

e At each iteration, we select a variable from £, and flip its value. We update the list of
unsatisfied checks in O(D) time, and update £ in O(Dr) (add or remove new checks).

Hence, each step takes O(Dr) time, and since the number of iterations is at most m this
implementation of the algorithm takes O(mDr) = O(m) whenever D and r are constant.

