Telecom Paris ACCQ202, Information Theory

ASSIGNMENT 5

The solutions can be found in “Elements of Information Theory, Cover & Thomas, 2nd edition”.
We point to the relevant sections.

Define the differential entropy h(X) of a continuous random variable X with density f(x) as
o0
W) = [ fla)log f(a)da,
—00

if the integral exists. The conditional differential entropy h(X|Y) is defined analogously.
Exercise 1. Calculate the differential entropy for the following distributions:
a. Uniform distribution on [0, a], a > 0.
b. Gaussian distribution N/(0, o).
Is h(X) always non-negative? Provide a proof or a counterexample.
For solution, see Examples 8.1.1 and 8.1.2.
Exercise 2. (Scaling and translation) For ¢ a constant, how are h(cX) and h(X + c) related to h(X)?
For solution, see Theorems 8.6.3 and 8.6.4.

Exercise 3. (Relation to discrete entropy) Consider a random variable X with density f(z). Divide
the range of X into consecutive segments of length A. Assume that the density is continuous within
the segments. By the mean value theorem, there exists a value x; within each segment ¢ such that

(i+1)A
flx)A = /A f(x)dx.

Consider the quantized random variable X2, defined by X2 = z; if iA < X < (i 4+ 1)A.
a. Calculate the (discrete) entropy H(X2).
b. Conclude that under suitable conditions!, as A — 0,

H(X2) +1og A = h(X).

c. Interpret the result as: the entropy of an n-bit quantization of a continuous random variable X
is approximately h(X) + n by considering X ~ Unif [0, 1] and X ~ N(0,1).

For solution, see Section 8.3.

Exercise 4. (KL divergence) Define the KL divergence between two densities f and g as

D(fllg) = / /(@) 1og§§jj§dx.

'If f(x)log f(x) is Riemann integrable




a. Using Jensen’s inequality, prove that D( f||g) is always non-negative.

b. Show that for a random variable X ~ f with variance o2,

2

hX) < =log2meo

N =

with equality if and only if X is a Gaussian random variable with variance o2.

Hint — Calculate the KL divergence between f and the Gaussian density.
For solution, see Theorems 8.6.1 and 8.6.5.

Exercise 5. (Mutual information) Define the mutual information between continuous random variables
X and Y with joint distribution fxy (z,y) and marginals fx (x) and fy (y) as

I(X;Y) = D(fxv|lfx fr)-
a. Show that I(X;Y) = h(Y) — h(Y|X).

b. Consider independent random variables X and Z with Z ~ A(0,N) and E[X?] < P. Let
Y = X + Z. Show that

2 vy 1 r
Cc= f(:p)r:?E%(}ggPl(X’Y) =3 log <1 + N) . (D

Hint — Prove the inequality (without the max) first and exhibit an example distribution of X
(Gaussian?) for which the inequality becomes an equality.

The solution to part (a.) follows from the definition of mutual information. For solution to part
(b.), see Section 9.1, Eqn.9.8 — 9.17.

Exercise 6. (AEP for continuous random variables) Define the volume of a set A C R"” as
Vol(A) = / dzidzs - - - dz,,.
A

g

For € > 0 and any n, define the typical set A"’ with respect to f(x) as follows:

A0 = { (a1 ]—ilogfm,...,xn) - h(X)’ <},

where f(x1,...,2n) = [[72, f(24).
a. Prove the following for a typical set.
1. IP’(AE”)) > 1 — ¢ for n sufficiently large.
2. Vol(A™) < an(h(X)+e),
3. Vol(A™) > (1 — €)27((X)=9) for  sufficiently large.



b. Do the arguments above extend to joint distributions? Define the typical set AE")

fxv(z,y) (with marginals fx and fy) as

with respect to

AP {w,y") |- tom @ < 00| < 6 |- 10g 07 - ) <

1 |
‘—711 log fxy(z",y") — h(X,Y)‘ < e}.

Prove the following: If (X, Y"") ~ fx(z") fy (y™), then

P(Yn,?n) S A(")) < 9—n(I(X;Y)—3€)

€

c. If X; are drawn i.i.d. from a distribution f such that EX? < P — ¢ where P — ¢ > 0, argue that

the probability of the event
1 n
Ey = {n 2 X? > P}
1=

goes to 0 as n — oo.
For solution, see point 4 in the proof of Theorem 9.1.1.

Exercise 7. (Achievability for Gaussian channels) Consider a time-discrete channel with output Y; at
time ¢, where Y; is the sum of the input X; and noise Z; independent of X; with Z; ~ i.i.d. N'(0, N).
If there is a power constraint, namely, for any codeword (x1, x9, . . ., z,,) transmitted over the channel,

we require that
I~ o
i=1

Following the arguments in the proof of achievability in the discrete channel coding theorem (and the
previous exercise), show that the maximum rate of communication over this channel, R > C — € for
every € > 0 where C'is as defined in (1).

For solution, see the proof of Theorem 9.1.1.



