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Assignment 3

Exercise 1 (Guessing, Huffman). There are 6 bottles of wine, one of which you know has gone
bad. You do not know which bottle contains the bad wine, but you know that the probability
of each bottle being bad is (8/23, 6/23, 4/23, 2/23, 2/23, 1/23). The bad wine has a distinctive
taste. To find the bad wine your friend suggests you to taste a little bit of each wine until you
find the bad wine.

a. To have the least number of tastings on average, what should your strategy be? Which
bottle should be tasted first?

b. What is the average number of tastings to find the bad wine?

c. Calculate the minimum average number of tastings if you are allowed to taste a mixture
of different wines and detect a bad wine’s taste inside (the distinctive taste is retained
even when mixed with other good wines).

d. Is the strategy studied in (a) optimal if you are allowed to mix wines?

Solution. a. A guessing strategy for a random variable X can be written as a vector G =
(g1, g2, . . .) with gi ∈ X being the i-th guess of X. With this notation, the expected
number of guesses is given by (G) =

∑
i i(X = gi). Now assume that for some i < j

we have (X = gj) > (X = gi), and consider the new strategy G′ where gi and gj are
swapped. It then follows that E(G) − E(G′) = (j − i)((X = gj) − (X = gi)) > 0. It
follows that the strategy that guesses the values of X in decreasing order of proabilities
minimizes the expected number of guesses.
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c. A sequence of questions is equivalent to a code. Indeed, any question depends on the
sequence of answers to the questions before it. Since the sequence of answers uniquely
determines a particular sample of X, if we represent the sequence of yes-no answers by 0
and 1, each sample of X is associated to a codeword. Conversely, from a binary code for
each possible sample of X, we can find a sequence of questions that corresponds to the
code. The i-th question is “Is the i-th bit bit equal to 1?” or, more specifically, “Does
the X belongs to the set of samples whose codewords have the i-th bit equal to 1?”
Therefore, from the equivalence between quessing strategy and code, finding a quessing
strategy that minimizes the number of questions is equivalent to finding a code whose
average length is minimal. An optimal strategy to identify the bad bottle is thus obtained
via the construction of the Huffman code of the bad bottle probability distribution. Note
that we use here the fact that we are allowed to mix wines, hence we can ask, at each
step, whether the bad wine belongs to some particular subset of bottles or not.

Exercise 2 (Entropy and Yes/No questions). We are asked to determine an object by asking
yes-no questions. The object is drawn randomly from a finite set according to a certain



distribution. Playing optimally, we need 38.5 questions on the average to find the object. At
least how many elements does the finite set have?

Solution. An optimal yes/no scheme corresponds to an optimal source code whose expected
length is at most H(X)+1, where X is the hidden object. Hence H(X)+1 ≥ 38.5. On the other
hand we have log |X | ≥ H(X). These two yield that log |X | ≥ 37.5, and so n ≥ d237.5e.

Exercise 3. (Mixing increases entropy) Show that the entropy of the probability distribution,
(p1, . . . , pi, . . . , pj , . . . , pm) is less than that of the distribution

(
p1, . . . ,

pi+pj
2 , . . . ,

pi+pj
2 , . . . , pm

)
.

Solution. Let P ≡ (p1, . . . , pi, . . . , pj , . . . , pm) and Q ≡
(
p1, . . . ,

pi+pj
2 , . . . ,

pi+pj
2 , . . . , pm

)
.

Then,

H(Q)−H(P ) = 2

(
pi + pj

2

)
log

(
2

pi + pj

)
− pi log

1

pi
− pj log

1

pj

= pi log
2pi

(pi + pj)
+ pj log

2pj
pi + pj

= (pi + pj)

[
pi

pi + pj
log

pi/(pi + pj)

1/2
+

pj
pi + pj

log
pj/(pi + pj)

1/2

]
.

Identify the expression on the right side as (pi+pj) times the KL divergence between Bernoulli
distributions

(
pi

pi+pj
,

pj
pi+pj

)
and

(
1
2 ,

1
2

)
, which is non-negative.

Exercise 4. (Entropy of common distributions) Calculate the entropy of X where

a. X is the output of n independent tosses of a coin which shows heads with probability p.

b. X is a Geo(p) random variable. That is, P[X = k] = (1− p)k−1p.

Solution. a. H(X) = H(X1, X2, ..., Xn) where Xi ∼ i.i.d. Ber(p). Therefore,

H(X) = nH(X1) = n[−p log p− (1− p) log(1− p)].

b. X ∼ Geo(p). We know that for X ∼ Geo(p),E[X] = 1
p . Let h(X) = − logP (X) where

P (k) = (1− p)k−1p. Then,

H(X) = E[h(X)]

= E[− log{(1− p)X−1p}]
= E[(1−X) log(1− p)− log p]

=

(
1− 1

p

)
log(1− p)− log p

=
−(1− p) log(1− p)− p log p

p

Exercise 5. (KL divergence) Calculate the KL divergence (relative entropy) between P and Q
where



a. P ≡ Geo(p) and Q ≡ Geo(q).

b. P ≡ N (µ1, σ
2) and Q ≡ N (µ2, σ

2)

Solution. a. P ≡ Geo(p), Q ≡ Geo(q).

D(P ||Q) = EP

[
log

(1− p)X−1p

(1− q)X−1q

]
= EP

[
(X − 1) log

(
1− p

1− q

)
+ log

(
p

q

)]
=

(
1

p
− 1

)
log

(
1− p

1− q

)
+ log

(
p

q

)
a. P ≡ N (µ1, σ

2), Q ≡ N (µ2, σ
2).

D(P ||Q) =

∫
R

e
−(x−µ1)

2

2σ2

√
2πσ2

[(x− µ1)
2 − (x− µ2)

2

2σ2

]
dx

=

∫
R

e
−(x−µ1)

2

2σ2

√
2πσ2

[2x(µ2 − µ1) + µ2
2 − µ2

1

2σ2

]
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=
2(µ2 − µ1)

2σ2

∫
R

e
−(x−µ1)

2

2σ2

√
2πσ2

· x · dx+
(µ2

2 − µ2
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2σ2

∫
R

e
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2

2σ2

√
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=
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1
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=
(µ1 − µ2)

2

2σ2
.

Exercise 6 (Mutual information). a. Let X be a uniform random variable over {1, 2, 3, 4}.
Let

Y =

{
0 if X is odd
1 otherwise.

Z =

{
0 if X is even
1 otherwise.

Find I(Y ;Z).

b. We roll a fair die which has six sides (opposite sides of a die add up to 7). What is the
mutual information between the top side and the one facing you?

Solution. a. Note that always Y 6= Z, which means knowing Z lets us know Y , i.e.
H(Y |Z) = 0.

I(Y ;Z) = H(Y )−H(Y |Z) = 1− 0 = 1.

b. Top side XT can take any of {1, 2, 3, 4, 5, 6} with same probability. Moreover, knowing
the one facing us, XF , XT can take four values with same probability, so

I(XT ;XF ) = H(XT )−H(XT |XF ) = log(6)− log(4).



Exercise 7 (Entropy and Mutual Information). Prove the following inequalities:

a. H(X,Y |Z) ≥ H(X|Z),

b. I(X,Y ;Z) ≥ I(X;Z),

c. H(X,Y, Z)−H(X,Y ) ≤ H(X,Z)−H(X).

Solution. a.

H(X,Y |Z)
(a)
= H(X|Z) +H(Y |X,Z)

(b)

≥ H(X|Z)

where (a) holds by the chain rule for entropy and where (b) follows by the non-negativity
of entropy.

b.

I(X,Y |Z)
(a)
= I(X;Z) + I(Y ;Z|X)

(b)

≥ I(X;Z)

where (a) holds by the chain rule for mutual information and where (b) holds by the
non-negativity of mutual information.

c.

H(X,Y, Z)−H(X,Y )
(a)
= (H(X,Z) +H(Y |X,Z))− (H(X) +H(Y |X))

(b)

≤ H(X,Z)−H(X)

where (a) is due to the chain rule for entropy and where (b) holds since conditioning
cannot increase entropy.

Exercise 8 (Conditioning for mutual information). Give examples of joint random variables X,
Y , and Z such that

a. I(X;Y |Z) < I(X;Y ).

b. I(X;Y |Z) > I(X;Y ).

Solution. a. Let X be Bernoulli
(
1
2

)
random variable and Z = Y = X. Then,

I(X;Y |Z) = H(X|Z)−H(X|Y, Z) = H(X|X)−H(X|X) = 0− 0 = 0

I(X;Y ) = H(X)−H(X|Y ) = H(X)−H(X|X) = H(X)− 0 = 1.



b. Let X and Y be independent Bernoulli
(
1
2

)
random variables and Z = X + Y . Then,

I(X;Y |Z) = H(X|Z)−H(X|Y, Z) = H(X)−H(X|X,Y ) = 1− 0 = 1

I(X;Y ) = H(X)−H(X|Y ) = H(X)−H(X) = 0.

Exercise 9 (Entropy and pairwise independence). Let X, Y , Z be three binary Bernoulli(12)
random variables that are pairwise independent; that is, I(X;Y ) = I(X;Z) = I(Y ;Z) = 0.

a. Under this constraint, what is the minimum value for H(X,Y, Z)?

b. Give an example achieving this minimum.

Solution. a.

H(X,Y, Z) = H(X) +H(Y |X) +H(Z|Y,X)

= H(X) +H(Y ) +H(Z|Y,X)

≥ H(X) +H(Y )

= 2

b. Let Z = X ⊕ Y . Verify that I(X;Z) = I(Y ;Z) = 0.

Exercise 10. (Conditioning and sub additivity) Prove the following.

a.
H(X1, X2, X3) ≤

1

2
[H(X1, X2) +H(X2, X3) +H(X3, X1)] .

b.
H(X1, X2, X3) ≥

1

2
[H(X1, X2|X3) +H(X2, X3|X1) +H(X3, X1|X2)] .

Solution. a. Using chain rule, H(X1, X2, X3) can be expanded in the following two ways.

2H(X1, X2, X3) = H(X1, X2) +H(X3|X1, X2) +H(X2, X3) +H(X1|X2, X3)

= H(X1, X2) +H(X2, X3) +H(X3|X1, X2) +H(X1|X2, X3)

≤ H(X1, X2) +H(X2, X3) +H(X3|X1, X2) +H(X1)

≤ H(X1, X2) +H(X2, X3) +H(X3|X1) +H(X1)

= H(X1, X2) +H(X2, X3) +H(X3, X1).

b. Add and subtract H(X1) +H(X2) +H(X3).

H(X1, X2|X3) +H(X2, X3|X1) +H(X3, X1|X2)

= H(X1, X2|X3) +H(X3) +H(X2, X3|X1) +H(X1) +H(X3, X1|X2) +H(X2)

−
[
H(X1) +H(X2) +H(X3)

]
= 3H(X1, X2, X3)−

[
H(X1) +H(X2) +H(X3)

]
≤ 3H(X1, X2, X3)−H(X1, X2, X3)

= 2H(X1, X2, X3).



Exercise 11. Show that among all N-valued random variables X with E[X] = µ, the Geo(1/µ)
random variable has the maximum value of Shannon entropy.
Hint – Consider random variables X and Y with mean µ and taking values in N with X ∼ PX

and Y ∼ PY where PY is Geometric, and calculate D(PX ||PY ).

Solution. Let X be a r.v. such that X = i with probability PX(i), i ∈ N and E[X] = µ. Let
Y ∼ PY ≡ Geo

(
1
µ

)
. Therefore, E[Y ] = µ. Then,

D(PX ||PY ) =
∞∑
i=1

PX(i) log
PX(i)

PY (i)

=
∞∑
i=1

PX(i) logPX(i)− PY (i) logPY (i) + PY (i) logPY (i)− PX(i) logPY (i)

= H(Y )−H(X) +

∞∑
i=1

[
PY (i) logPY (i)− PX(i) logPY (i)

]
. (1)

Since PY (i) =
(
1− 1

µ

)i−1(
1
µ

)
,

∞∑
i=1

PX(i) logPY (i) =

∞∑
i=1

PX(i) · (i− 1) log(µ− 1)−
∞∑
i=1

PX(i) · i · logµ

= (µ− 1) log(µ− 1)− µ logµ. (2)

From the entropy calculation of a Geometric r.v. (Exer. 2b), we know that

∞∑
i=1

PY (i) logPY (i) =

(
1− 1

µ

)
log

(
1− 1

µ

)
+
(

1
µ

)
log

(
1
µ

)
1/µ

= (µ− 1) log(µ− 1)− µ logµ. (3)

Substituting (2) and (3) in (1), we get

H(Y )−H(X) = D(PX ||PY )

≥ 0.

Therefore, for any r.v. X ∈ N with E[X] = µ, H(X) ≤ H(Y ) where Y ∼ Geo
(

1
µ

)
.

Exercise 12 (Conditional mutual information). Consider a sequence of n binary random
variables X1, X2, · · · , Xn. Each sequence with an even number of 1’s has probability 2−(n−1),
and each sequence with an odd number of 1’s has probability 0. Find the mutual informations
I(X1;X2), I(X2;X3|X1), . . . , I(Xn−1;Xn|X1, . . . , Xn−2).

Proof. We always have Xn = X1 ⊕X2 ⊕ · · · ⊕Xn−1,1 since the sequences with odd number of
ones have zero probability, and since each sequence with even number of 1s is equiprobable,
X1, X2, · · · , Xn are independent Bernoulli

(
1
2

)
random variables. So, for 2 ≤ i ≤ n− 2,

I(Xi;Xi+1|X1, · · · , Xi−1) = H(Xi+1|X1, · · · , Xi−1)−H(Xi+1|X1, · · · , Xi−1, Xi)

= H(Xi+1)−H(Xi+1) = 0

1⊕ is sum modulo 2.



and for i = n− 1,

I(Xn−1;Xn|X1, · · · , Xn−2) = H(Xn|X1, · · · , Xn−2)−H(Xn|X1, · · · , Xn−2, Xn−1)

= H(X1 ⊕X2 ⊕ · · · ⊕Xn−1|X1, · · · , Xn−2)−H(X1 ⊕X2 ⊕ · · · ⊕Xn−1|X1, · · · , Xn−2, Xn−1)

= H(Xn−1|X1, · · · , Xn−2)− 0

= H(Xn−1) = 1


