
Telecom Paris ACCQ202, Information Theory

ASSIGNMENT 1

For Exercises 1-3 we use C to denote the code. The codeword symbols belong to A = {a, b} and
we use ε to denote the empty string.

Exercise 1 (Uniquely decodable and instantaneous codes). For each of the following codes,
determine if it is prefix-free. Which of these are uniquely decodable?

1. C = {a, ba, bba, bbb}.

2. C = {a, ab, abb, abbb}.

3. C = {a, ab, ba}.

4. C = {b, abb, abbba, bbba, baabb}.

Solution. 1. Prefix-free 2. Uniquely decodable, not prefix-free 3. Not uniquely decodable 4. Not
uniquely decodable.

Exercise 2 (Dangling suffixes). For two sets E and D containing strings from alphabet A, define
E−1D as the set of residual words obtained from D by removing some prefix that belongs to E.
Formally,

E−1D = {y : xy ∈ D and x ∈ E}.
Calculate C−1C for the examples above.

Solution. 1. {ε} 2. {ε, b, bb, bbb} 3. {ε, b} 4. {ε, bba, aabb, ba}.

Exercise 3 (Test for unique decodability). Define the recursion

V1 = C−1C\{ε},
Vn+1 = C−1Vn ∪ V −1

n C, n ≥ 1.

Continue the recursion until Vn 3 ε; if not, until Vn = Vm for some m < n.

1. For which of the above examples does the recursion terminate due to the first condition?
Conclude that this happens if and only if the code is not uniquely decodable.

2. Does the above recursion terminate always? What is the complexity of the above algorithm in
terms of the number of codewords and their lengths?

Solution. 1. Examples 2, 3, and 4.

2. The above recursion terminates always since there are only a finite number of dangling suffixes
for a given code. The time complexity of the algorithm is O(`m) where ` is the total length of
all the codewords and m is the number of codewords.
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Exercise 4 (Alternative definition of unique decodability). An f : X → Y code is called uniquely
decodable if for any messages u = u1 · · ·uk and v = v1 · · · vk (where u1, v1, · · · , uk, vk ∈ X ) with

f(u1)f(u2) · · · f(uk) = f(v1)f(v2) · · · f(vk),

we have ui = vi for all i. That is, as opposed to the definition given in class, we require that the
codes of any pair of messages with the same length are equal. Prove that the two definitions are
equivalent.

Solution. By considering encoding of sequences of equal lengths, the definition given in the exercise
is implied by the definition given in class, namely, a code is uniquely decodable if for any sequence
of message symbols

u = u1, . . . , um

and
v = v1, . . . , vk,

the condition
f(u)

def
= f(u1)f(u2) . . . f(um) = f(v1)f(v2) . . . f(vk)

def
= f(v)

implies that u = v, that is m = k and ui = vi for 1 ≤ i ≤ m. Conversely, assume that the definition
in the question holds. We want to show that the condition f(u) = f(v) implies that u = v. By
considering the encoding of the concatenation of u and v we get

f(uv) = f(u)f(v) = f(v)f(u) = f(vu)

Without loss of generality suppose that m ≤ k. Then the above equality implies that

f(u1)f(u2) . . . f(um) = f(v1)f(v2) . . . f(vm)

and
f(vm+1), . . . , f(vk) = ∅,

which is possible only if u = v.

Exercise 5 (Uniquely decodable and instantaneous codes). Let L =
n∑

i=1

pil
2
i be the expected value

of the square of the word lengths associated with an encoding of the random variable X . Let L1 =
minL over all instantaneous codes; and let L2 = minL over all uniquely decodable codes. What
inequality relationship exists between L1 and L2?

Solution. Since all instantaneous codes are uniquely decodable, we have L2 ≤ L1. Suppose L2 is
attained by a uniquely decodable code with certain codeword lengths. Then, by the Kraft-McMillan
inequality, there exists a prefix-free code with the same codeword lengths. Since L depends only on
the codeword lengths, this implies that L1 ≤ L2.

Exercise 6 (Equality in Kraft’s inequality). An f prefix code is called full if it loses its prefix
property by adding any new codeword to it. A string x is called undecodable if it is impossible to
construct a sequence of codeword symbols such that x is a prefix of their concatenation. Show that
the following three statements are equivalent.
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a. f is full,

b. there is no undecodable string with respect to f ,

c.
∑n

i=1 s
−li = 1, where s is the cardinality of the code alphabet, li is the codeword length of the

ith codeword, and n is the number of codewords.

Solution. It can be checked that all the statements are equivalent to the following. In the tree
representation of the code, there is no leaf node without a sibling.

Exercise 7 (Coin tosses and Kraft’s inequality). You are given a prefix-free code and a fair coin.
Continue tossing the coin until you see a codeword. What is the probability that you will stop?
What is the point of this experiment?

Solution. Let `i be the length of the i-th codeword and let Ai be the event that we see the i-th
codeword. Then, probability that we will stop is

P (∪iAi) =
∑
i

P (Ai) =
∑
i

2−`i ,

where the first identity follows since Ais are disjoint (for a prefix-free code). Now,
∑

i 2
−`i ≤ 1

since it equals the probability of an event, which proves the Kraft’s inequality.
Remark – This proof illustrates the powerful technique of probabilistic method1 which is a recurring
theme in information theory.

Exercise 8 (Entropy). Let X and Y be the outcomes of a pair of dice thrown independently (hence
each independently takes on values in {1, 2, 3, 4, 5, 6} with equal probabilities). Let Z = X + Y
and let Q = Z mod 2. Compute the following entropies: H(X), H(Y ), H(Z), H(Q).

Solution. X and Y are uniform random variables over {1, 2, 3, 4, 5, 6}, so

H(X) = H(Y ) = log2(6).

The probability distribution of Z is

Z =

(
2 3 4 5 6 7 8 9 10 11 12
1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

)
So, H(Z) = 3.27. The probability distribution of Q is

Q =

(
0 1
1
2

1
2

)
an so H(Q) = 1.

1Noga Alon and Joel H. Spencer. The Probabilistic Method. John Wiley & Sons, 3rd edition, 2008. Exer. 1.8, p. 12.
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Exercise 9 (Entropy). Let X be a random variable taking values in M points a1, . . . , aM and let
pX(aM) = α. Show that

H(X) = −α logα− (1− α) log(1− α) + (1− α)H(Y )

where Y is a random variable taking values in M − 1 points a1, . . . , aM−1 with probabilities
PY (aj) = PX(aj)/(1− α) for 1 ≤ j ≤M − 1. Show that

H(X) ≤ −α logα− (1− α) log(1− α) + (1− α) log(M − 1)

and determine the condition for equality.

Solution.

H(X) = −
M∑
j=1

pX(aj) log pX(aj)

= −α logα−
M−1∑
j=1

pX(aj) log pX(aj)

= −α logα− (1− α)
M−1∑
j=1

pX(aj)

1− α
log

(
pX(aj)

(1− α)
(1− α)

)

= −α logα− (1− α)
M−1∑
j=1

pY (aj)
{
log pY (aj) + log(1− α)

}
= −α logα− (1− α) log(1− α) + (1− α)H(Y )

where for the final equality we used
∑M−1

j=1 pY (aj) = 1− α.
To prove that

H(X) ≤ −α logα− (1− α) log(1− α) + (1− α) log(M − 1)

it suffices to observe that Y takes at most M − 1 values, hence its entropy is at most log(M − 1).
Equality is achieved when the distribution of Y is uniform over the M − 1 points; that is, when
pY (aj) = 1/(M − 1) for 1 ≤ j ≤M − 1, whereby

pX =

(
1− α
M − 1

,
1− α
M − 1

, . . . ,
1− α
M − 1

, α

)
.
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