Introduction to Machine Learning (APM-0EL05-TP)
Course 1

Telecom Paris Teacher: A. Tchamkerten

ASSIGNMENT 1 - SOLUTIONS

Exercise 1 (Best predictor when distribution is known). Suppose $(X,Y) \sim P_{X,Y}$ take finitely many values. A statistician is who observes X and knows $P_{X,Y}$ is asked to find a prediction rule $h(X) \in \{0,1\}$ that minimizes the error probability $Pr(h(X) \neq Y)$. Show that the best predictor is $h^*(x) = \arg\max_y P(y|x)$.

Solution. We have

$$Pr(h(X) \neq Y) = \sum_{x} Pr(Y \neq h(X)|X = x) Pr(X = x)$$

$$= \sum_{x} (1 - Pr(Y = h(x)|X = x)) Pr(X = x)$$

$$\geq \sum_{x} (1 - Pr(Y = h^{*}(x)|X = x)) Pr(X = x)$$
(1)

where the inequality follows from the definition of $h^*(x)$.

Exercise 2. Let \mathcal{H} be a class of binary classifiers over a domain \mathcal{X} . Let P be an unknown distribution over \mathcal{X} , and let f be true hypothesis in \mathcal{H} . Fix some $h \in \mathcal{H}$. Show that the expected value of the empirical loss $L_S(h)$ equals $L_{(P,f)}(h)$, namely,

$$\mathbb{E}_{S \sim P^m} \left[L_S(h) \right] = L_{(P,f)}(h)$$

Solution. By the linearity of expectation,

$$\mathbb{E}_{S \sim P^{m}} [L_{S}(h)] = \mathbb{E}_{S \sim P^{m}} \left[\frac{1}{m} \sum_{i=1}^{m} \mathbb{1} \{ h(X_{i}) \neq f(X_{i}) \} \right]$$

$$= \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}_{X_{i} \sim P} [\mathbb{1} \{ h(X_{i}) \neq f(X_{i}) \}]$$

$$= \frac{1}{m} \sum_{i=1}^{m} \mathbb{P}_{X_{i} \sim P} [h(X_{i}) \neq f(X_{i})]$$

$$= \frac{1}{m} m L_{(P,f)}(h)$$

$$= L_{(P,f)}(h).$$

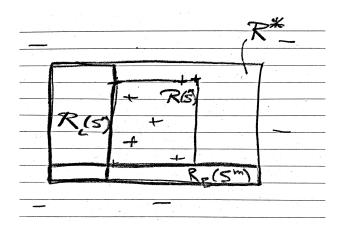


Figure 1: The outside rectangle R^* corresponds to f. The rectangle in the middle corresponds to $R(S^m)$. R_L and R_B correspond to the left and right stripes. R_R and R_T are not represented. The difference $R^* \setminus R(S^m)$ is included in the union of the four stripes.

Exercise 3 (Axis aligned rectangles). An axis aligned rectangle classifier in the plane is a classifier that assigns the value 1 to a point if and only if it is inside a certain rectangle. Formally, given real numbers $a_1 \le b_1$, $a_2 \le b_2$, define the classifier $h_{(a_1,b_1,a_2,b_2)}$ by

$$h_{(a_1,b_1,a_2,b_2)}(x_1,x_2) = \begin{cases} 1 & \text{if } a_1 \le x_1 \le b_1 \text{ and } a_2 \le x_2 \le b_2 \\ 0 & \text{otherwise} \end{cases}$$
 (2)

The class of all axis aligned rectangles in the plane is defined as

$$\mathcal{H}^2_{\text{rec}} = \{ h_{(a_1,b_1,a_2,b_2)} : a_1 \le b_1, \text{ and } a_2 \le b_2 \}$$

Note that this is an infinite size hypothesis class. Throughout this exercise we rely on the realizability assumption.

- 1. Let A be the algorithm that returns the smallest rectangle enclosing all positive examples in the training set. Show that A is an ERM.
- 2. Show that if A receives a training set of size $\geq \frac{4\log(4/\delta)}{\epsilon}$ then, with probability of at least 1δ it returns a hypothesis with error of at most ϵ .

Hint: Let R^* be the rectangle that generates the labels, and let f be the corresponding hypothesis. Let $R(S^m)$ be the rectangle returned by A. See illustration in Figure 1.

- Show that $R(S^m) \subseteq R^*$.
- Consider the 4 stripes that surround $R(S^m)$ as shown on Fig. 1—some of those stripes might be the emptyset. Let us denote them by $R_L(S^m)$, $R_T(S^m)$, $R_R(S^m)$, $R_B(S^m)$ (the left, top, right, and bottom stripes). Show that if the probability under P of each of these stripes is at most $\varepsilon/4$, then the hypothesis returned by $A(S^m)$ has error of at most ε , that is $L_{P,f}(A(S^m)) \le \varepsilon$. Therefore, if $L_{P,f}(A(S^m)) > \varepsilon$ then $P(R_i(S^m)) > \varepsilon/4$ for at least some i. Define $I(S^m)$ as the set of stripe indices i such that $P(R_i(S^m)) > \varepsilon/4$. Show that $P^m(i \in I(S^m)) \le (1 \varepsilon/4)^m$. Conclude.

- 3. Repeat the previous question for the class of axis aligned rectangles in \mathbb{R}^d .
- 4. Show that the runtime of applying the algorithm A mentioned earlier is polynomial in d, $1/\epsilon$, and in $\log(1/\delta)$.

Solution.

- 1. Observe that by definition A achieves zero on all instances in the training set. Since the loss function is nonnegative, we deduce that A is an ERM.
- 2. Fix some distribution P over \mathcal{X} , and define R^* as in the hint. Let f be the hypothesis associated with R^* . We have

$$L_{(P,f)}(A(s^m)) = P(R^* \setminus R(s^m)) = P(\bigcup_{i \in \{L,T,R,B\}} R_i(s^m)).$$

Therefore, if s^m induces a "large error" under distribution P, i.e., is such that

$$L_{(P,f)}(A(s^m)) > \varepsilon,$$

it necessarily satisfies

$$P(R_i(s^m)) > \varepsilon/4 \tag{3}$$

for some $i \in \{L, T, R, B\}$. So let us assume that s^m satisfy (3) for some $i \in \{L, T, R, B\}$ —for otherwise there is nothing to prove. Denote by $I(s^m)$ the set of indices i in $\{L, T, R, B\}$ such that $P(R_i(s^m)) > \varepsilon/4$. Observe that if $i \in I(s^m)$ then necessarily the m data points of s^m all belong to a region whose probability is at most $(1 - \varepsilon/4)^m$, that is

$$P^m(i \in I(s^m)) \le (1 - \varepsilon/4)^m.$$

Therefore,

$$P^{m}(L_{(P,f)}(A(S^{m})) > \varepsilon) \leq P^{m}(I(S^{m}) \neq \emptyset)$$

$$= P^{m} \left(\bigcup_{i \in \{L,T,R,B\}} \{i \in I(S^{m})\} \right)$$

$$\leq \sum_{i \in \{L,T,R,B\}} P^{m} (i \in I(S^{m}))$$

$$\leq \sum_{i \in \{L,T,R,B\}} (1 - \varepsilon/4)^{m}$$

$$= 4(1 - \varepsilon/4)^{m}$$

$$\leq 4e^{-m\varepsilon/4}.$$

We deduce that if

$$m > (4/\varepsilon) \ln(4/\delta)$$

then with probability $\geq 1 - \delta$ the error will be $\leq \varepsilon$, irrespectively of P.

3. The hypothesis class of axis aligned rectangles in \mathbb{R}^d is defined as follows. Given real numbers $a_1 \leq b_1, a_2 \leq b_2, ..., a_d \leq b_d$, define the classifier $h_{(a_1,b_1,...,a_d,b_d)}$ by

$$h_{(a_1,b_1,\ldots,a_d,b_d)}(x_1,\ldots,x_d) = \begin{cases} 1 & \text{if } \forall i \in [d], a_i \le x_i \le b_i \\ 0 & \text{otherwise} \end{cases}$$
 (4)

The class of all axis-aligned rectangles in \mathbb{R}^d is defined as

$$\mathcal{H}_{rec}^d = \{h_{(a_1,b_1,\dots,a_d,b_d)} : \forall i \in [d], a_i \le b_i\}.$$

It can be seen that the same algorithm proposed above is an ERM for this case as well. The sample complexity is analyzed similarly. The only difference is that instead of 4 strips, we have 2d strips (2 strips for each dimension). Thus, it suffices to draw a training set of size $\left\lceil \frac{2d \log(2d/\delta)}{\epsilon} \right\rceil$.

4. For each dimension, the algorithm has to find the minimal and the maximal values among the positive instances in the training sequence. Therefore, its runtime is $\mathcal{O}(md)$. Since we have shown that the required value of m is at most $\left\lceil \frac{2d \log(2d/\delta)}{\epsilon} \right\rceil$, it follows that the runtime of the algorithm is indeed polynomial in d, $1/\epsilon$, and $\log(1/\delta)$.