
Telecom Paris Introduction to Machine Learning (APM-0EL05-TP)
Teacher: A. Tchamkerten Course 1

ASSIGNMENT 1 - SOLUTIONS

Exercise 1 (Best predictor when distribution is known). Suppose (X, Y ) ∼ PX,Y take finitely many
values. A statistician is who observes X and knows PX,Y is asked to find a prediction rule h(X) ∈
{0, 1} that minimizes the error probability Pr(h(X) 6= Y ). Show that the best predictor is h∗(x) =
argmaxy P (y|x).

Solution. We have

Pr(h(X) 6= Y ) =
∑
x

Pr(Y 6= h(X)|X = x)Pr(X = x)

=
∑
x

(1− Pr(Y = h(x)|X = x))Pr(X = x)

≥
∑
x

(1− Pr(Y = h∗(x)|X = x))Pr(X = x) (1)

where the inequality follows from the definition of h∗(x).

Exercise 2. LetH be a class of binary classifiers over a domainX . Let P be an unknown distribution
over X , and let f be true hypothesis in H. Fix some h ∈ H. Show that the expected value of the
empirical loss LS(h) equals L(P,f)(h), namely,

E
S∼Pm

[LS(h)] = L(P,f)(h)

Solution. By the linearity of expectation,

E
S∼Pm

[LS(h)] = E
S∼Pm

[
1

m

m∑
i=1

1{h(Xi) 6= f(Xi)}

]

=
1

m

m∑
i=1

E
Xi∼P

[1{h(Xi) 6= f(Xi)}]

=
1

m

m∑
i=1

P
Xi∼P

[h(Xi) 6= f(Xi)]

=
1

m
mL(P,f)(h)

= L(P,f)(h).
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Figure 1: The outside rectangle R∗ corresponds to f . The rectangle in the middle corresponds to
R(Sm). RL and RB correspond to the left and right stripes. RR and RT are not represented. The
difference R∗\R(Sm) is included in the union of the four stripes.

Exercise 3 (Axis aligned rectangles). An axis aligned rectangle classifier in the plane is a classifier
that assigns the value 1 to a point if and only if it is inside a certain rectangle. Formally, given real
numbers a1 ≤ b1, a2 ≤ b2, define the classifier h(a1,b1,a2,b2) by

h(a1,b1,a2,b2)(x1, x2) =

{
1 if a1 ≤ x1 ≤ b1 and a2 ≤ x2 ≤ b2

0 otherwise
. (2)

The class of all axis aligned rectangles in the plane is defined as

H2
rec = {h(a1,b1,a2,b2) : a1 ≤ b1, and a2 ≤ b2}

Note that this is an infinite size hypothesis class. Throughout this exercise we rely on the realizability
assumption.

1. Let A be the algorithm that returns the smallest rectangle enclosing all positive examples in
the training set. Show that A is an ERM.

2. Show that if A receives a training set of size ≥ 4 log(4/δ)
ε

then, with probability of at least 1− δ
it returns a hypothesis with error of at most ε.

Hint: Let R∗ be the rectangle that generates the labels, and let f be the corresponding
hypothesis. Let R(Sm) be the rectangle returned by A. See illustration in Figure 1.

• Show that R(Sm) ⊆ R∗.
• Consider the 4 stripes that surround R(Sm) as shown on Fig. 1—some of those stripes

might be the emptyset. Let us denote them byRL(S
m), RT (S

m), RR(S
m), RB(S

m) (the
left, top, right, and bottom stripes). Show that if the probability under P of each of these
stripes is at most ε/4, then the hypothesis returned by A(Sm) has error of at most ε, that
is LP,f (A(Sm)) ≤ ε. Therefore, if LP,f (A(Sm)) > ε then P (Ri(S

m)) > ε/4 for at least
some i. Define I(Sm) as the set of stripe indices i such that P (Ri(S

m)) > ε/4. Show
that Pm(i ∈ I(Sm)) ≤ (1− ε/4)m. Conclude.
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3. Repeat the previous question for the class of axis aligned rectangles in Rd.

4. Show that the runtime of applying the algorithm A mentioned earlier is polynomial in d, 1/ε,
and in log(1/δ).

Solution.

1. Observe that by definition A achieves zero on all instances in the training set. Since the loss
function is nonnegative, we deduce that A is an ERM.

2. Fix some distribution P over X , and define R∗ as in the hint. Let f be the hypothesis
associated with R∗. We have

L(P,f)(A(s
m)) = P (R∗ \R(sm)) = P (∪i∈{L,T,R,B}Ri(s

m)).

Therefore, if sm induces a “large error” under distribution P , i.e., is such that

L(P,f)(A(s
m)) > ε,

it necessarily satisfies

P (Ri(s
m)) > ε/4 (3)

for some i ∈ {L, T,R,B}. So let us assume that sm satisfy (3) for some i ∈ {L, T,R,B}
—for otherwise there is nothing to prove. Denote by I(sm) the set of indices i in {L, T,R,B}
such that P (Ri(s

m)) > ε/4. Observe that if i ∈ I(sm) then necessarily the m data points of
sm all belong to a region whose probability is at most (1− ε/4)m, that is

Pm(i ∈ I(sm)) ≤ (1− ε/4)m.

Therefore,

Pm(L(P,f)(A(S
m)) > ε) ≤ Pm(I(Sm) 6= ∅)

= Pm

 ⋃
i∈{L,T,R,B}

{i ∈ I(Sm)}


≤

∑
i∈{L,T,R,B}

Pm (i ∈ I(Sm))

≤
∑

i∈{L,T,R,B}

(1− ε/4)m

= 4(1− ε/4)m

≤ 4e−mε/4.

We deduce that if
m > (4/ε) ln(4/δ)

then with probability ≥ 1− δ the error will be ≤ ε, irrespectively of P .
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3. The hypothesis class of axis aligned rectangles in Rd is defined as follows. Given real numbers
a1 ≤ b1, a2 ≤ b2, ...,ad ≤ bd, define the classifier h(a1,b1,...,ad,bd) by

h(a1,b1,...,ad,bd)(x1, . . . , xd) =

{
1 if ∀i ∈ [d], ai ≤ xi ≤ bi

0 otherwise
. (4)

The class of all axis-aligned rectangles in Rd is defined as

Hd
rec = {h(a1,b1,...,ad,bd) : ∀i ∈ [d], ai ≤ bi}.

It can be seen that the same algorithm proposed above is an ERM for this case as well. The
sample complexity is analyzed similarly. The only difference is that instead of 4 strips, we
have 2d strips (2 strips for each dimension). Thus, it suffices to draw a training set of size⌈
2d log(2d/δ)

ε

⌉
.

4. For each dimension, the algorithm has to find the minimal and the maximal values among the
positive instances in the training sequence. Therefore, its runtime is O(md). Since we have
shown that the required value of m is at most

⌈
2d log(2d/δ)

ε

⌉
, it follows that the runtime of the

algorithm is indeed polynomial in d, 1/ε, and log(1/δ).
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