## **Telecom Paris**

## ASSIGNMENT 6

**Exercise 1.** (Converse for Gaussian channel  $X \to X + Z$ ,  $X \sim \mathcal{N}(0, \sigma^2)$ ) Consider any  $(2^{nR}, n)$  code that satisfies the power constraint, that is,

$$\frac{1}{n}\sum_{i=1}^{n}x_{i}(w)^{2} \le P,$$

for  $w = 1, 2, \dots, 2^{nR}$ . Let  $P_i$  denote the average power of the *i*-th column of the codebook, that is,

$$P_i = \frac{1}{2^{nR}} \sum_{w} x_i(w)^2.$$

a. Let W be distributed uniformly over  $\{1, 2, \dots, 2^{nR}\}$ . Let  $\widehat{W}$  be the estimate of W based on  $Y^n$ . Let  $\epsilon_n \to 0$  as probability of error for the code goes to 0. Justify the steps with labels on the equality or the inequality signs.

$$nR = H(W) = I(W; \widehat{W}) + H(W|\widehat{W})$$

$$\stackrel{(a)}{\leq} I(W; \widehat{W}) + n\epsilon_n$$

$$\stackrel{(b)}{\leq} I(X^n; Y^n) + n\epsilon_n$$

$$= h(Y^n) - h(Y^n|X^n) + n\epsilon_n$$

$$\stackrel{(c)}{=} h(Y^n) - h(Z^n) + n\epsilon_n$$

$$\stackrel{(d)}{\leq} \sum_{i=1}^n h(Y_i) - h(Z_i) + n\epsilon_n.$$

b. Calculate  $\mathbb{E}[Y_i^2]$  and deduce that

$$nR \le \frac{1}{2} \sum_{i=1}^{n} \log \left( 1 + \frac{P_i}{\sigma^2} \right) + n\epsilon_n.$$

- c. Prove that  $\frac{1}{n} \sum_{i=1}^{n} P_i \leq P$ .
- d. Use Jensen's inequality to conclude that

$$R \le \frac{1}{2} \log \left( 1 + \frac{P}{\sigma^2} \right)$$

for any code for which the probability of error goes to 0.

**Exercise 2.** (List decoding Fano's inequality) Consider discrete random variables X and Y with X taking values in the set  $\{0,1\}^k$ . Upon observing Y we produce a list L(Y) of size  $2^\ell$  such that

$$\mathbb{P}(X \in L(Y)) \ge 1 - \varepsilon.$$

Show that

$$H(X|Y) \le \varepsilon k + (1-\varepsilon)\ell + 1.$$

 $\mathit{Hint}$  – Define the random variable  $T=\mathbf{1}_{\{X\in L(Y)\}}$ . Expand H(X,Y,T) using chain rule.

Exercise 3. (Shearer's lemma) Shearer's lemma is a generalization of the basic inequality

$$H(X_1,\ldots,X_n) \le \sum_{i=1}^n H(X_i).$$

For  $S \subseteq [n] = \{1, 2, \ldots\}$ , we write  $X_S = (X_i : i \in S)$ .

a. Prove the following Lemma: Let  $X_1, \ldots, X_n$  be random variables. Let  $S_1, \ldots, S_m \subseteq [n]$  be subsets such that each  $i \in [n]$  belongs to at least k sets. Then,

$$kH(X_1,\ldots,X_n) \le \sum_{j=1}^m H(X_{S_j}).$$

b. Suppose n distinct points in  $\mathbb{R}^3$  have  $n_1$  distinct projections on the XY-plane,  $n_2$  distinct projections on the XZ-plane, and  $n_3$  distinct projections on the YZ-plane. For two different points, since all three projections cannot be the same, we have  $n \leq n_1 n_2 n_3$ . Using Shearer's lemma, show that

$$n \leq \sqrt{n_1 n_2 n_3}$$
.

 $\mathit{Hint}$  – Let  $P=(X_1,X_2,X_3)$  be one of the n points picked uniformly at random. Then,  $P_1=(X_1,X_2), P_2=(X_1,X_3),$  and  $P_3=(X_2,X_3)$  are its three projections.