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Exercise 1. (Convexity)

a. For distributions p and q on a finite alphabet, show that D(p||q) is convex in the pair (p, q).i.e.,
if (p1, q1) and (p2, q2) are two pairs of pmfs, then,

D(λp1 + (1− λ)p2||λq1 + (1− λ)q2) ≤ λD(p1||q1) + (1− λ)D(p2||q2),

for all 0 ≤ λ ≤ 1.
Hint – Suppose that the alphabet size is m. Then, the left-side is a sum of m terms. Apply
log-sum inequality to a particular term and sum over all m terms.

Solution. Consider a symbol x.

λp1(x) log
p1(x)

q1(x)
+ (1− λ)p2(x) log

p2(x)

q2(x)
= λp1(x) log

λp1(x)

λq1(x)
+ (1− λ)p2(x) log

(1− λ)p2(x)
(1− λ)q2(x)

≥
{
λp1(x) + (1− λ)p2(x)

}
log

λp1(x) + (1− λ)p2(x)
λq1(x) + (1− λ)q2(x)

by log-sum inequality. Sum over all x to obtain the desired inequality.

b. For (X,Y ) ∼ p(x)p(y|x), show that I(X;Y ) is a convex function of p(y|x) for fixed p(x).
Hint –

i. Consider p1(y|x) and p2(y|x) and their convex combination pλ(y|x) = λp1(y|x) + (1 −
λ)p2(y|x).

ii. Write out the joint distribution pλ(x, y) and the marginal pλ(y).

iii. Consider the KL divergence between pλ(x, y) and p(x)pλ(y).

Solution. Fix the distribution of X to be pX . Let

pXYλ (x, y) = pX(x)pλ(y|x)
= pX(x) [λp1(y|x) + (1− λ)p2(y|x)]
= λpX(x)p1(y|x) + (1− λ)pX(x)p2(y|x),

and thus its marginal

pYλ (y) =
∑
x

λpX(x)p1(y|x) + (1− λ)pX(x)p2(y|x).

Now,

pX(x)pYλ (y) = pX(x)
∑
x′

λpX(x′)p1(y|x′) + (1− λ)pX(x′)p2(y|x′)

= λpX(x)
∑
x′

pX(x′)p1(y|x′) + (1− λ)pX(x)
∑
x′

pX(x′)p2(y|x′)



Since I(X;Y ) is the KL divergence between pXYλ and pXpYλ , by convexity of KL divergence in
(pXY , pXpY ) proved in part a, we have

D(pXYλ ||pXpYλ ) ≤ λD

(
pXp1

∣∣∣∣∣∣pX∑
x′

pX(x′)p1(·|x′)

)
+ (1− λ)D

(
pXp2

∣∣∣∣∣∣pX∑
x′

pX(x′)p2(·|x′)

)
.

The first term is λ times the KL divergence between the joint distribution pXp1 and the product of
their marginals. Similarly, the second term is (1− λ) times the KL divergence between the joint
distribution pXp2 and the product of their marginals. Thus, we have completed the proof.

Exercise 2. (Converse to the rate distortion theorem) Recall that the rate distortion function is given
by

R(D) = min
p(x̂|x):

∑
x,x̂ p(x)p(x̂|x)d(x,x̂)≤D

I(X; X̂).

a. Prove that R(D) is a non-increasing convex function of D.
Hint – To prove that R(D) is convex, consider two rate distortion pairs, (R1, D1) and (R2, D2),
which lie on the rate distortion curve. Let the joint distributions that achieve these pairs be
p1(x, x̂) = p(x)p1(x̂|x) and p2(x, x̂) = p(x)p2(x̂|x). Consider the distribution

pλ = λp1 + (1− λ)p2.

Since the distortion is a linear function of the distribution, we have

D(pλ) = λD1 + (1− λ)D2.

Also,
Ipλ(X; X̂) ≤ λIp1(X; X̂) + (1− λ)Ip2(X; X̂).

b. Consider any (2nR, n) rate distortion code defined by functions fn and gn. Let X̂n =
gn(fn(X

n)) be the reproduced sequence corresponding to Xn. Justify the steps with labels
on the equality or the inequality signs.

I(Xn; X̂n) = H(Xn)−H(Xn|X̂n)

(a)
=

n∑
i=1

H(Xi)−H(Xn|X̂n)

(b)
=

n∑
i=1

H(Xi)−
n∑
i=1

H(Xi|X̂n, Xi−1, . . . , X1)

(c)

≥
n∑
i=1

H(Xi)−
n∑
i=1

H(Xi|X̂i)

=

n∑
i=1

I(Xi; X̂i).



c. Assume that the expected distortion Ed(Xn, X̂n) ≤ D for this code. Justify the steps with labels
on the equality or the inequality signs.

n∑
i=1

R(Ed(Xi, X̂i)) = n
n∑
i=1

1

n
R(Ed(Xi, X̂i))

(a)

≥ nR

(
1

n

n∑
i=1

Ed(Xi, X̂i)

)
(b)
= nR(Ed(Xn, X̂n)).

d. Using the results above, show that R ≥ R(D). Hint – Start with nR ≥ H(X̂n).

For solution, see Section 10.4 in “Elements of Information Theory, Cover & Thomas, 2nd edition”.

Exercise 3. (Uniquely decodable codes) Given an alphabet X = {1, . . . ,m} and a probability
distribution P = (p1, . . . , pm) on X , solve (using Lagrange multipliers) the following convex
optimization problem:

min
`1,...,`m∈R

m∑
i=1

pi`i subject to
m∑
i=1

2−`i ≤ 1.

Conclude that for a uniquely decodable code, the minimum expected codeword length is greater than
or equal to H(P ). Why is it greater than or equal to and not equal to?

Solution. In order to find the optimal ` = (`1, . . . , `m), we define the Lagrangian

L(`, λ) =
m∑
i=1

pi`i − λ

(
m∑
i=1

2−`i − 1

)
.

Taking derivative with respect to `i and λ and setting them equal to 0 yields

dL

d`i
= pi − λ2−`i ln 2 = 0

and λ = 1/ ln 2 since
∑m

i=1 pi = 1, whereby

`i = − log2 pi.

Thus, the minimum is L∗ =
∑m

i=1 pi`i = H(P ). The minimum expected codeword length for a
uniquely decodable code, L is obtained by solving the same optimization problem with an additional
constraint, namely, `i ∈ N; therefore, the minimum can only be larger. Hence, L ≥ L∗ = H(P ).

Exercise 4. (Rényi entropy) For a distribution P on a finite alphabet X , the Rényi entropy of order α,
Hα(P ) is given by

Hα(P ) =
1

1− α
log

(
m∑
i=1

pαi

)
.

for α ≥ 0, α 6= 1.

a. Show that the Shannon entropy H(P ) satisfies

H(P ) = lim
α→1

Hα(P ).

Hint – Use L’Hôpital’s rule.



Solution. Let X = {1, . . . ,m} and P = (p1, . . . , pm). By L’Hôpital’s rule,

lim
α→1

Hα(P ) = lim
α→1

ln
∑m

i=1 p
α
i

1− α

=

1∑m
i=1 p

α
i

∑m
i=1 p

α
i ln pi

−1

∣∣∣∣∣
α=1

= −
m∑
i=1

pi ln pi

= H(P ).

b. For i.i.d. random variables X and Y on X , what is P[X = Y ] in terms of H2(P )?

Solution. We have

H2(P ) = − log

m∑
i=1

p2i .

Then,

P[X = Y ] =
m∑
i=1

P[X = i, Y = i]

=
m∑
i=1

P[X = i] · P[Y = i]

=
m∑
i=1

p2i

= 2−H2(P ).

c. In the limit as α→∞, Hα converges to H∞ defined by

H∞(P ) = − logmax
i
Pi.

Show that H2 ≤ 2H∞.

Solution. Since “sum ≥ max”, we have

H2(P ) = − log
m∑
i=1

p2i

≤ − log

{
max
i
p2i

}
= 2H∞(P ).



d. Show that for a fixed P ,
H0 ≥ H1 ≥ H2 ≥ H∞,

where H1 denotes the Shannon entropy.

Solution. We have

H0(P ) = log

m∑
i=1

p0i = logm ≥ H1(P ).

By Jensen’s inequality, we have

H2(P ) = − log

{
m∑
i=1

pi · pi

}

≤
m∑
i=1

pi {− log pi}

= H1(P ).

We show the last inequality next.

H2(P ) = − log

{
m∑
i=1

pi · pi

}

≥ − log

{
max
i
pi

(
m∑
i=1

pi

)}
= H∞(P ).

Exercise 5. (List decoding Fano’s inequality) Consider discrete random variables X and Y with X
taking values in the set {0, 1}k. Upon observing Y we produce a list L(Y ) of size 2` such that

P(X ∈ L(Y )) ≥ 1− ε.

Show that
H(X|Y ) ≤ εk + (1− ε)`+ 1.

Hint – Define the random variable T = 1{X∈L(Y )}. Expand H(X,Y, T ) using chain rule.

Solution. Let T = 1{X∈L(Y )}. Since T is a function of X and Y , we have

H(X,Y ) = H(X,Y, T )

= H(T ) +H(Y |T ) +H(X|Y, T ).

Since H(X,Y ) = H(Y ) +H(X|Y ) and H(Y |T ) ≤ H(Y ), we have

H(X|Y ) ≤ H(T ) +H(X|Y, T )
= H(T ) +H(X|Y,L(Y ), T )

≤ H(T ) +H(X|L(Y ), T ),



since L(Y ) is a function of Y . Now,

H(X|L(Y ), T = 1) ≤ `,

and
H(X|L(Y ), T = 0) ≤ k − `,

and hence
H(X|L(Y ), T ) ≤ P[T = 1]`+ P[T = 0](k − `).

The result follows by observing that P[T = 1] ≤ 1, P[T = 0] ≤ ε, and H(T ) ≤ 1.

Exercise 6. (Shearer’s lemma) Shearer’s lemma is a generalization of the basic inequality

H(X1, . . . , Xn) ≤
n∑
i=1

H(Xi).

For S ⊆ [n] = {1, 2, . . .}, we write XS = (Xi : i ∈ S).

a. Prove the lemma: Let X1, . . . , Xn be random variables. Let S1, . . . , Sm ⊆ [n] be subsets such
that each i ∈ [n] belongs to at least k sets. Then,

kH(X1, . . . , Xn) ≤
m∑
j=1

H(XSj ).

Solution. Let Sj = {i1, . . . , isj} with i1 < . . . < isj . Then,

H(XSj ) = H(Xi1) +H(Xi2 |Xi1) + . . .+H(Xisj
|Xi1 , . . . , Xisj−1)

≥ H(Xi1 |X1, . . . , Xi1−1) +H(Xi2 |X1, . . . , Xi2−1) + . . .+H(Xisj
|X1, . . . , Xisj−1).

Sum the left side over j = 1 to m to obtain
∑m

i=1H(XSj ). Since each i ∈ [n] belongs to at
least k sets from Sj , j = 1, . . . ,m, the sum of the right side over j = 1 to m is equal to at least
k times the sum

∑n
i=1H(Xi|Xi−1), whereby the result follows.

b. Suppose n distinct points in R3 have n1 distinct projections on the XY -plane, n2 distinct
projections on the XZ-plane, and n3 distinct projections on the Y Z-plane. For two different
points, since all three projections cannot be the same, we have n ≤ n1n2n3. Using Shearer’s
lemma, show that

n ≤
√
n1n2n3.

Hint – Let P = (X1, X2, X3) be one of the n points picked uniformly at random. Then, P1 =
(X1, X2), P2 = (X1, X3), and P3 = (X2, X3) are its three projections.

Solution. By Shearer’s lemma, we have

2H(P ) ≤ H(P1) +H(P2) +H(P3).

The results follows since H(P ) = log n and H(Pi) ≤ log ni, i = 1, 2, 3.



Exercise 7. (Shotgun DNA sequencing)1 DNA sequencing is the basic workhorse of modern day
biology and medicine. Shotgun sequencing is the dominant technique used: many randomly located
short fragments called reads are extracted from the DNA sequence, and these reads are assembled to
reconstruct the original sequence. A basic question is: given a sequencing technology and the statistics
of the DNA sequence, what is the minimum number of reads required for reliable reconstruction?

The DNA sequence s = s1s2 · · · sG is modeled as an i.i.d. random process of length G with
each symbol taking values according to a probability distribution p = (p1, p2, p3, p4) on the nucleotide
alphabet {A,C,G, T}. A read is a substring of length L from the DNA sequence. The objective of
DNA sequencing is to reconstruct the whole sequence s based on N reads from the sequence. The
starting location of each read is uniformly distributed on the DNA sequence and are independent from
one read to another. We seek to understand the fundamental limits on the two quantities N and L.

a. Covering: Argue that for the perfect reconstruction of s, for a fixed L, the collection of reads
should cover the entire sequence and hence a necessary condition is that N ≥ G/L.

Solution. Suppose the N reads, each of length L are Li1 , . . . , LiN , where the read Lij starts at
location ij ∈ [G−L+1]. For k = 1, . . . , G, let Ak = 1 if k ∈ [ij , ij +L] for some ij , j ∈ [N ].
Then,

G∑
k=1

Ak ≤ NL.

Assume that NL < G. Then, there exists k∗ ∈ [G] for which Ak∗ = 0. Thus, the reads
Li1 , . . . , LiN could have been generated by s or another sequence s′ with s′i = si, i 6= k∗ and
s′k∗ 6= sk∗ . Hence, perfect reconstruction is not possible from the given reads.

b. An improvement via the coupon collector problem: The well-known “coupon collector problem”
is the following. Suppose we repeatedly and independently sample a random variable that is
uniformly distributed over {1, 2, . . . , n}. How many samples do we need to ensure the sampling
of all n numbers? The answer to this question is roughly n log n (https://en.wikipedia.
org/wiki/Coupon_collector%27s_problem).

Now, consider a modified DNA read technique where in each read, you get to observe L
independent locations (instead of contiguous locations). Can you use the coupon collector result
to get an estimate on the necessary number of reads N for this modified problem? What does it
say about the required number of reads for the original problem?

Solution. For the modified problem, each position 1, . . . , G is a coupon and each read provides
us with L coupons whereby

NL ≥ G lnG.

It is necessary to collect all the coupons for reconstruction for the original problem and hence
for the original problem,

N ≥ G

L
lnG.

1A. Motahari, G. Bresler, and D. Tse, “Information theory of DNA shotgun sequencing.” IEEE Transactions on
Information Theory 59.10 (2013): 6273-6289.



c. Suppose we have two DNA sequences, the first sequence generated by a uniform distribution on
{A,C, T,G} and the second by a distribution (0.5, 0.4, 0.05, 0.05). The DNA sequences and
the corresponding reads are as follows:

1. Sequence: ACTGCATAGT , Reads: TGC,CAT,ACT, TAG,AGT .

2. Sequence: ACACATACGC, Reads: ACA,CAC, TAC,ACG,CGC

Impossible to reconstruct?

i. Which among the two sequences can you reconstruct (uniquely) from the reads? Why?

ii. Calculate the Rényi entropy of order 2 (see Ex.4) for both the distributions.

Solution. The first sequence can be reconstructed from the reads while the second cannot
be. This is because the second sequence has repeated patterns of length 2 < L. The Rényi
entropy of order 2 for the uniform distribution is

H2(Unif) = log2 4 = 2,

and for P = (0.5, 0.4, 0.05, 0.05) is

H2(P ) = − log2[0.5
2 + 0.42 + 2 · 0.052] ≈ 0.725.

Recall from Ex.4b that larger the value of H2, smaller the probability of “collisions” or
repeats.

d. We observe that even if we have access to all length-L reads of the sequence, repeats make
reconstruction impossible (see figure). Denoting by SLi the length-L subsequence starting at
position i, and RL the number of length-L repeats, we have

E[RL] =
∑

1≤i<j≤G
P[SLi = SLj ].

Justify the following:

E[RL] >
(
G2

2
−GL

)
e−LH2(P ).

Proof. For a given sequence generated by (p1, p2, p3, p4), the probability that two specific
physically disjoint length-` subsequences are identical is 2−`H2(P ). In the sum, dropping the
terms in which SLi and SLj overlap, we obtain the desired bound.



e. Phase transition: For G� L, the above bound may be approximated as

E[RL] ≈
G2

2
e−LH2(P ).

Let G,L → ∞ with L/ lnG = L, a constant. Conclude that the expected number of repeats
approaches zero if

L > 2/H2(P )

and approaches infinity if
L < 2/H2(P ).

Interpret this result as a prescription for how large L should be in order for reconstruction to be
successful. Observe that N does not play any role here.

f. Assuming that L > 2/H2(P ) and N equals the estimate obtained in part b, conclude that the
number of reads (of length L) per nucleotide, given by N/G is roughly H2(P ).

Solution. For reconstruction to be successful, the expected number of repeats should go to 0 and
hence we need,

L = L lnG >
2 lnG

H2(P )
.

If N = G
L lnG, then

N

G
≤ H2(P ).


