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Enseignant: Aslan Tchamkerten Cours 3

1 Codes de Reed-Solomon (vers 1960): appréciez l’élégance!

Soit k ∈ [1, n] ,Fq tel que n ≤ q et α1, α2, ..., αn des “points d’évaluation” distincts de Fq. A un
message on associe un polynôme:

m = (m0,m2, . . . ,mk−1)↔ fm(X) =
k−1∑
i=0

miX
i.

Le code de Reed-Solomon (RS) est

C = {RS(m) = (fm(α1), fm(α2), ..., fm(αn)) : fm(X) ∈ Fq[X], deg(f) < k}

On observe que pour tout message m et m′

fm(X) + fm′(X) = fm+m′(X)

et
a · fm(X) = fa·m(X)

et donc (comme deg(fm+m′(X)) < k)

RS(m) +RS(m′) ∈ C

et
a ·RS(m) ∈ C.

Un code RS est donc linéaire. Alternativement, la linéarité se voit car l’encodage correspond à

(x1, x2, . . . , xn) = (m0,m1, . . . ,mk−1)


1 1 1 . . . 1
α1 α2 . . . αn

α2
1 α2

2 . . . . .
. . . . . . αk−1

n


avec à droite la “matrice d’évaluation” correpondant à la matrice génératrice.

Ce code a pour paramètres:

3-1



• longueur n

• dimension qk. Pour établir ceci il suffit de montrer que tout polynôme donne un mot code
différent. Si il existait f1 6= f2 t.q. f1(αi) = f2(αi) ∀i et telles que deg(f1) < k et deg(f2) < k,
alors en posant

g = f1 − f2
on aurait que le nombres de racines de g est ≥ n ≥ k alors que deg(g) < k ce qui impossible.

• une distance minimale d = n− k + 1. En effet

d = min
c∈C,c6=0

w(c)

et comme
w(c) = n− nbre racines

et que le nombre de racines est au plus k − 1, on a que

d ≥ n− (k − 1).

Il suit que d = n− k + 1 par la borne supérieure de Singleton.

Observation 1 Les codes de Reed-Solomon sont donc des codes MDS.

Observation 2 RS(n, k − 1) ⊆ RS(n, k) car les polynôme de degré ≤ k − 1 sont aussi de degré
≤ k.

Observation 3 Eliminer (ponctuer) une même coordonnée à tous les mots codes d’un code de
RS(n,k) donne un code de Reed Solomon (on fait une évaluation en moins) pour autant que n−1 ≥ k.

1.1 Décodage (Berlekamp-Welch, 1986)

Soit C un code RS, (α1, α2, ..., αn) ∈ Fn
q , et c ∈ C tel que ci = f ∗(αi)

On observe y = c+ e et l’on veut retrouver y.

CAS 1: Pas d’erreur
yi = f ∗(αi) ∀i.

Alors 
y1
.
.
yn

 =


1 α1 α1

2 . . . αk−1
1

1 α2 α2
2 . . . αk−1

2

. . . . . . .

. . . . . . αk−1
n

 ·


m0

.

.
mk−1


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La matrice des alphas étant de rang plein (matrice de vandermonde) on peut retrouver le message
m (la matrice est inversible a gauche).

CAS 2: erreurs
On définit

Λ(X) =
∏

j:ej 6=0

(X − αj)

comme étant le polynôme localisateur d’erreur. On remarque que les racines de Λ donnent les
localisations des erreurs. Si l’on parvient à connâıtre Λ, on élimine les yi correspondants. Si le
nombre d’erreurs est ≤ d− 1, on pourra retrouver c (propriété MDS).

Observation 4 Le polynôme Λ satisfait

Λ(αi) · yi = Λ(αi) · f ∗(αi)

car si il y a erreur en i, Λ(αi) = 0, et sinon, yi = f ∗(αi) = ci la ième coordonnée du vecteur envoyé.

Ceci suggère le problème de décodage suivant:

Problème 1 Trouver Λ(X) non nul et f(X) tels que

Λ(αi) · (yi − f(αi)) = 0 ∀i (1)

avec deg(f) ≤ k − 1 et deg(Λ) minimal.

Le difficulté est que (1) est une équation avec des termes multivariés (produits de coefficients de Λ
et f) ce qui rend la solution possible mais complexe à trouver.

1.2 Relaxation du problème

Problème 2 Etant donné y1, y2, . . ., trouver Λ(X) et h(X) tels que

Λ(αi) · yi − h(αi) = 0 ∀i (2)

avec deg(h) < k + deg(Λ) et deg(Λ) minimal (on a juste remplacé le terme non linéaire Λ · f dans
(1) par un terme linéaire h).

Le problème s’écrit alors :
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
y1 0
0 y2
0 0 .
. . . yn




1 α1 α1
2 . αt

1

1 α2 α2
2 . αt

2

. . . . .

. . . . αt
n


︸ ︷︷ ︸

A


Λ0

.

.
Λt

 =


1 α1 α1

2 . αk+t−1
1

1 α2 α2
2 . αk+t−1

2

. . . . .

. . . . αk+t−1
n


︸ ︷︷ ︸

B


h0
.
.

hk+t−1


où t est le degré de Λ. Cette équation peut-être mise sous la forme canonique

(
B −A

)︸ ︷︷ ︸
C


h0
.

hk+t−1
λ0
.
λt

 = 0.

On essaie de résoudre pour t = 0, t = 1,... jusqu’au moment où on trouve une solution pour Λ
et h. Si h/Λ est un polynôme de degré < k alors l’algorithme produit f̂ = h/Λ. Sinon, il déclare
une erreur.

1. Comment garantir qu’une paire (h,Λ) existe autre que la solution nulle, i.e., comment guar-
antir que le noyau de C ait dimension ≥ 1? Par le théorème du rang on a dim(Ker(C)) =
(k + 2t+ 1)− n et donc il suffit que

(k + 2t+ 1)− n ≥ 1

pour que léquation ci-dessus admette une solution non nulle. Cette condition est équivaente
à la condition

t ≥
⌊
d− 1

2

⌋
puisque d = n− k + 1. Donc l’algorithme trouve une paire (h,Λ) pour un

t ≤
⌊
d− 1

2

⌋
.

De plus, une de ces paires (h,Λ) correspond au polynôme localisateur Λ(X) =
∏

ej 6=0(X−αj)

et f ∗(X), si le nombre d’erreurs est ≤
⌊
d−1
2

⌋
.

2. Cette solution est-elle unique? Soit (h1,Λ1) et (h2,Λ2) deux solutions de (2) pour un même
t ≤

⌊
d−1
2

⌋
. Alors

h1(αi) ∗ Λ2(αi) = Λ1(αi) ∗ yi ∗ Λ2(αi) = Λ1(αi) ∗ h2(αi) i = 1, 2, . . . , n.
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D’où
h1(αi)/Λ1(αi) = h2(αi)/Λ2(αi) i = 1, 2, . . . , n

et comme
deg(h1/Λ1) = deg(h2/Λ2) = k − 1 < n

on déduit que
h1/Λ1 = h2/Λ2 = f ∗

et donc que la solution trouvée est la bonne.

En combinant 1. et 2. il suit que la procédure de décodage s’arrête pour un

t ≤
⌊
d− 1

2

⌋
et que cette solution est correcte si le nombre d’erreurs est ≤

⌊
d−1
2

⌋
. De plus le décodage est de

faible complexité; à chaque itération la résolution du système linéaire peut se faire avec complexité
O(n3) comme il y a au plus t ≤ n itérations, la complexité totale est O(n4).

2 Codes BCH (Bose, Ray-Chaudhuri, Hocquenghem)

Vu: pour 1 ≤ k ≤ n et Fq t.q. n ≤ q il existe un code RS(n, k, d = n− k + 1).
Soit n = q = pm, ou p est premier et m est entier. On définit le code

BCHp,m,d ≡ RS[n, n− d+ 1, d]pm ∩ Fn
p

I.e., le sous-code de RS obtenu par la restriction des composantes dans le corps de base Fp. Se
décode donc comme un code RS.

Paramètres:

• longeur n = pm

• distance minimale ≥ d

Remarque:
Ces codes permettent d’atteindre la borne de Hamming pour certaines petites valeurs de n.

Théorème 1

dim(BCHp,m,d) ≥ pm − 1−m
⌈

(d− 2)(d− 1)

p

⌉
et donc pour tout m, t ≥ 1 entier BCH2,m,2t est un [n, n− 1− (2t− 1)(t− 1) log2 n, 2t]2 code.

Cette classe de codes est intéressante seulement si t = O(
√
n/ log n) (ce qui donne un taux élevé et

une distance minimale faible, sous linéaire).
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