ACCQ204

Enseignant: Aslan Tchamkerten Cours 3

1 Codes de Reed-Solomon (vers 1960): appréciez 1’élégance!

Soit k € [1,n],F, tel que n < ¢ et aq, 9, ..., des “points d’évaluation” distincts de F,. A un
message on associe un polynome:

m = (mo, Mg, ..., Mg_1) <> fin(X Zszl

Le code de Reed-Solomon (RS) est
C ={RS(m) = (fm(), fm(@2), s frnlan)) : fin(X) € Fy[X], deg(f) < k}
On observe que pour tout message m et m/’
fn(X) + fr(X) = frnsme (X)
et

a- fm(X) = fam<X)
et donc (comme deg( frim (X)) < k)

RS(m)+ RS(m') e C

et
a-RS(m)eC.
Un code RS est donc linéaire. Alternativement, la linéarité se voit car ’encodage correspond a
1 1 1 . . . 1
(ZE,I‘ x):(mm m ) a1 Qo P (7%
1y 42y -y dn 05 1y k—1 Oé% Oé% )
of-1

avec a droite la “matrice d’évaluation” correpondant a la matrice génératrice.
Ce code a pour parametres:
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e longueur n

e dimension ¢*. Pour établir ceci il suffit de montrer que tout polynéme donne un mot code
différent. Si il existait f1 # fo t.q. fi(a;) = fa(ay) Vi et telles que deg(f1) < k et deg(f2) < k,

alors en posant
g=rh—1r
on aurait que le nombres de racines de g est > n > k alors que deg(g) < k ce qui impossible.

e une distance minimale d =n — k + 1. En effet

d= min w(c)
ceC,c£0

et comme
w(c) = n — nbre racines

et que le nombre de racines est au plus £ — 1, on a que
d>n—(k—-1).
Il suit que d =n — k + 1 par la borne supérieure de Singleton.
Observation 1 Les codes de Reed-Solomon sont donc des codes MDS.

Observation 2 RS(n,k — 1) C RS(n,k) car les polynome de degré < k — 1 sont aussi de degré
<k.

Observation 3 Eliminer (ponctuer) une méme coordonnée a tous les mots codes d’un code de
RS(n,k) donne un code de Reed Solomon (on fait une évaluation en moins) pour autant que n—1 > k.

1.1 Décodage (Berlekamp-Welch, 1986)

Soit €' un code RS, (a1, g, ..., o) € Fy, et ¢ € C tel que ¢; = f*()
On observe y = ¢ + e et 'on veut retrouver y.

CAS 1: Pas d’erreur
yi = [*(ci) Vi.
Alors

Y1 1l o v . . . o mo
1042&22...042

Yn . . . B @ mME—1
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La matrice des alphas étant de rang plein (matrice de vandermonde) on peut retrouver le message
m (la matrice est inversible a gauche).

CAS 2: erreurs
On définit

AX) =[] (X —ay)
j:e; #0
comme étant le polynome localisateur d’erreur. On remarque que les racines de A donnent les

localisations des erreurs. Si 'on parvient a connaitre A, on élimine les y; correspondants. Si le
nombre d’erreurs est < d — 1, on pourra retrouver ¢ (propriété MDS).

Observation 4 Le polynome A satisfait

A(ei) - yi = Mag) - 7 (i)
car si il y a erreur en i, A(ay) = 0, et sinon, y; = f*(a;) = ¢; la iéme coordonnée du vecteur envoyé.
Ceci suggere le probleme de décodage suivant:

Probleme 1 Trouver A(X) non nul et f(X) tels que

AMai) - (i — flai)) =0 Vi (1)
avec deg(f) < k —1 et deg(A) minimal.

Le difficulté est que (1) est une équation avec des termes multivariés (produits de coefficients de A
et f) ce qui rend la solution possible mais complexe a trouver.

1.2 Relaxation du probleme

Probleme 2 FEtant donné yi,ya, ..., trouver A(X) et h(X) tels que

avec deg(h) < k+ deg(A) et deg(A) minimal (on a juste remplacé le terme non linéaire A - f dans
(1) par un terme linéaire h).

Le probleme s’écrit alors :
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U1 0 1 (05] a12 . O[i AO 1 aq (1/12 . (I]f+t_1 ho

0 1y 1 ay a? . af . 1l s aw? ab it
0 O . . .. .. . )
¢ ki1
Yn . . . B O At . . . . O./nJr hk+t71
~~ g NG - 7
A B

ol t est le degré de A. Cette équation peut-étre mise sous la forme canonique

ho
hews |
(8 —a)| M| =0
C .
M

On essaie de résoudre pour ¢t = 0, t = 1,... jusqu'au moment ou on trouve une solution pour A
et h. Si h/A est un polynome de degré < k alors I'algorithme produit f = h/A. Sinon, il déclare
une erreur.

1. Comment garantir qu'une paire (h, A) existe autre que la solution nulle, i.e., comment guar-
antir que le noyau de C' ait dimension > 1?7 Par le théoréme du rang on a dim(Ker(C)) =
(k+2t+ 1) —n et donc il suffit que

(k+2t+1)—n>1
pour que léquation ci-dessus admette une solution non nulle. Cette condition est équivaente

a la condition
t> | ——
- 2

puisque d = n — k + 1. Donc l'algorithme trouve une paire (h, A) pour un

L < d—1
— 2 .
De plus, une de ces paires (h, A) correspond au polynome localisateur A(X) = ][, (X — ;)

et f*(X), si le nombre d’erreurs est < |41

2. Cette solution est-elle unique? Soit (hy, A1) et (ha, A2) deux solutions de (2) pour un méme
t < L%J Alors

hi(a;) * Ag(i) = Av(0y) * y; * Ao(a;) = Ay(ou) * ha(ay) 1=1,2,...,n.
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D’ou
hi(ci) /A1 () = ha(ay)/As(a;) i=1,2,...,n
et comme
deg(hi/A1) = deg(ha/Ay) =k —1<n
on déduit que
hl/Al = h2/A2 = f"
et donc que la solution trouvée est la bonne.

En combinant 1. et 2. il suit que la procédure de décodage s’arréte pour un

p< |21
- 2
et que cette solution est correcte si le nombre d’erreurs est < L%J De plus le décodage est de

faible complexité; a chaque itération la résolution du systeme linéaire peut se faire avec complexité
O(n?) comme il y a au plus t < n itérations, la complexité totale est O(n?).

2 Codes BCH (Bose, Ray-Chaudhuri, Hocquenghem)

Vu: pour 1 <k <netlF,t.q n<gqilexiste un code RS(n,k,d=n—k+1).
Soit n = ¢ = p"™, ou p est premier et m est entier. On définit le code

BCH,;ma = RS[n,n—d+1,dm NF,

Le., le sous-code de RS obtenu par la restriction des composantes dans le corps de base IF,. Se
décode donc comme un code RS.
Parametres:

e longeur n = p™

e distance minimale > d

Remarque:
Ces codes permettent d’atteindre la borne de Hamming pour certaines petites valeurs de n.

Théoréme 1

dim(BCH,q) = p" — 1 —m {WW

et donc pour tout m,t > 1 entier BCHg 00 est un [n,n —1— (2t — 1)(t — 1) log, n, 2t]y code.

Cette classe de codes est intéressante seulement si t = O(y/n/logn) (ce qui donne un taux élevé et
une distance minimale faible, sous linéaire).
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