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Exercise 1 (Block coding). Suppose a source generates X1, X2, . . . , Xn in an i.i.d. fashion and
suppose we encode these symbols all at once, instead of symbol-by-symbol. Exhibit a coding scheme
whose per-symbol expected length lies between H(X) and H(X) + 1/n.

Solution. Use a Shannon code over a super-symbol (X1, X2, . . . , Xn).

Exercise 2 (Bad codes). Which of the following binary codes cannot be a Huffman code for any
distribution? Why?

a. 0, 10, 111, 101

b. 00, 010, 011, 10, 110

c. 1, 000, 001, 010, 011

Solution. a. A Huffman code is a prefix free code but here we have 10 which is a prefix of 101.

b. This is not a Huffman code since codeword 110 does not have any sibling. Hence, the code could
be improved by replacing this codeword with 11.

c. This is a Huffman code for distribution (0.4, 0.15, 0.15, 0.15, 0.15) for instance.

Exercise 3 (Huffman codes). For the distribution (p1, ..., pn), where

p1 > p2 > · · · > pn > 0,

we have an optimal binary prefix code. Show that

a. If p1 > 2/5 then the corresponding codeword has length 1.

b. If p1 < 1/3 then the corresponding codeword has length at least 2.

Solution. Consider the algorithm for constructing Huffman codes. Let (q1, ..., qk), k ≥ 1 be the
distribution at the (n − k)-th iteration of the algorithm, sorted in the decreasing order. Note that for
k = n, (q1, ..., qk) = (p1, ..., pn). In the next iteration, the two smallest probabilities, qk−1 and qk are
replaced by their sum qk−1 + qk, then a Huffman code for set of probabilities (q1, ..., qk−2, qk−1 + qk)
is constructed. Suppose the corresponding codes are (C1, · · · , Ck−1), then the Huffman code for
distribution (q1, ..., qk) will be (C1, · · · , Ck−2, Ck−1 ∗ 0, Ck−1 ∗ 1) where ∗ denotes concatenation.

a. Suppose, by contradiction, that the codeword for p1 is greater or equal than 2, and consider the
first place where p1 becomes the second largest probability. More precisely, let

q1 ≥ q2 ≥ · · · ≥ qk+1,



k ≥ 3, q1 = p1 and qk + qk+1 ≥ q1. Now, notice that q2 ≥ qk ≥ qk+qk+1

2 ≥ q1
2 . So, we have

1 =

k+1∑
i=1

qi ≥ q1 + q2 + qk + qk+1

≥ q1 +
q1
2

+ q1 =
5

2
p1

>
5

2
· 2

5
= 1,

a contradiction.

b. Similarly as above consider (q1, q2, q3) with

q1 ≥ q2 ≥ q3,

and q1 = p1. Then

1 =
3∑

i=1

qi ≤ 3q1 = 3p1 < 3 · 1

3
= 1,

a contradiction.

Exercise 4 (Huffman code for a wrong source). The purpose of this problem is to see what happens
when you design a code for the wrong set of probabilities. Consider a Huffman code that is designed
for a symbol source whose probability is given by P . Suppose that we use this code for the source
with distribution Q. Find the average number of binary code symbols per source symbol and compare
it with the entropy of the source for the following.

1. P = (0.5, 0.3, 0.2), Q = (0.65, 0.2, 0.15)

2. P = (0.5, 0.3, 0.2), Q = (0.15, 0.2, 0.65)

3. P = (0.5, 0.3, 0.1, 0.1), Q = (0.3, 0.2, 0.3, 0.2)

Can the optimal codes for P and Q be the same?

Solution. Let L(X) denote the length of the codeword for symbol X . Let EQ[L] denote the expected
value of L(X) and HQ(X) denote the entropy when X has distribution Q.

1. A code for P is (0, 10, 11) and EQ[L] = 0.65 × 1 + 0.2 × 2 + 0.15 × 2 = 1.35. We calculate
the entropy to be HQ(X) ≈ 1.28. The optimal code for P and Q could be the same.

2. A code for P is (0, 10, 11) and EQ[L] = 0.15×1+0.2×2+0.65×2 = 1.65. The entropy is the
same as in the case above. The optimal code for P and Q are different but the set of codewords
could be the same.

3. A code for P is (0, 10, 110, 111) and EQ[L] = 0.3× 1 + 0.2× 2 + 0.3× 3 + 0.2× 3 = 2.2. We
calculate the entropy to be HQ(X) ≈ 1.97.



Exercise 5 (Shannon code, divergence). Suppose we wrongly estimate the probability of a source of
information, and that we use a Shannon code for a distribution Q whereas the true distribution is P .
Show that

H(P ) + D(P ||Q) ≤ L(C) ≤ H(P ) + D(P ||Q) + 1 .

So D(P ||Q) can be interpreted as the increase in descriptive complexity due to incorrect information.
Note that this interpretaion only holds for a Shannon code. For a Huffman code with P = (12 ,

1
2) and

Q = (2−50, 1− 2−50) the inequality is violated.

Solution. For a Shannon code for distribution Q, the length of the codeword of a symbol X is⌈
log 1

Q(X)

⌉
. Let EP [·] denote the expectation under the distribution P . Observe that

log
1

Q(X)
≤
⌈

log
1

Q(X)

⌉
≤ log

1

Q(X)
+ 1.

Then, the result follows from the following.

EP

[
log

1

Q(X)

]
=
∑
x

P (x) log
1

Q(x)

=
∑
x

P (x) log

(
P (x)

Q(x)

1

P (x)

)
=
∑
x

P (x) log
P (x)

Q(x)
+
∑
x

P (x) log
1

P (x)

= D(P ||Q) + H(P )

Exercise 6 (Huffman Codes). The sequence of six independent realizations of source X is encoded
symbol-by-symbol using a binary Huffman code. The resulted string is 10110000101. We know
that the alphabet of X has five elements and that its distribution is either (0.4, 0.3, 0.2, 0.05, 0.05) or
(0.3, 0.25, 0.2, 0.2, 0.05). Which of them is the distribution of X?

Solution. By the result in Exer.3b., every codeword in a Huffman code for the second distribution
should be of length at least 2. We know that there are 6 realizations of X and hence the string
10110000101 (of length 11) could not have been produced by a Huffman code for the second
distribution. A possible Huffman code for the first distribution, namely (0.4, 0.3, 0.2, 0.05, 0.05)
is (1, 01, 000, 0010, 0011) (Note that Huffman codes are not unique!). Using this code, one can
decode the string 10110000101 as 1, 01, 1, 000, 01, 01. Hence, the probability distribution of X is
(0.4, 0.3, 0.2, 0.05, 0.05).

Exercise 7 (Pure randomness from biased distributions). Let X1, X2, . . . , Xn denote the outcomes of
independent flips of a biased coin. Thus, for i = 1, . . . , n we have Pr(Xi = 1) = p,Pr(Xi = 0) =
1 − p, where p is unknown. We wish to obtain a sequence Z1, Z2, . . . , ZK of fair coin flips from
X1, X2, . . . , Xn. To this end let f : X n → {0, 1}? (where {0, 1}? = {Λ, 0, 1, 00, 01, . . .} is the set
of all finite length binary sequences including the null string Λ) be a mapping f(X1, X2, . . . , Xn) =
(Z1, Z2, ..., ZK), such that Zi ∼ Bernoulli(1/2) and where K possibly depends on (X1, ..., Xn). For
the sequence Z1, Z2, ..., ZK to correspond to fair coin flips, the map f from biased coin flips to fair flips
must have the property that all 2k sequences (z1, z2, . . . , zk) of a given length k have equal probability
(possibly 0). For example, for n = 2, the map f(01) = 0, f(10) = 1, f(00) = f(11) = Λ has the
property that Pr(Z1 = 1|K = 1) = Pr(Z1 = 0|K = 1) = 1/2.



a. Justify the following (in)equalities

nHb(p)
(a)
= H(X1, ..., Xn)

(b)

≥ H(Z1, Z2, . . . , ZK ,K)

(c)
= H(K) + H(Z1, Z2, ..., ZK |K)

(d)
= H(K) + E(K)

(e)

≥ E(K)

where E(K) denotes the expectation of K. Thus, on average, no more than nHb(p) fair coin
tosses can be derived from (X1, ..., Xn).

b. Exhibit a good map f on sequences of length n = 4.

Solution. a. (a.) the Xi’s are i.i.d. Bernoulli(p) distributed; (b) (ZK ,K) is a function of Xn;
(c) chain rule; (d) given K = k, (Z1, Z2, . . . , Zk) is an i.i.d. Bernoulli(1/2) sequence, hence
H(Z1, Z2, ..., ZK |K = k) = k, from which the result follows; (d) non-negativity of the entropy.

b. One possibility is as follows. Let Tk be the set of binary sequences of length 4 with exactly k
ones (k ∈ {0, 1, 2, . . . , 4}). Observe that T1 and T3 each have four elements, and each contains
equiprobable elements (obviously, the elements in T1 have a different probability than those in
T3). We map the 4 elements in T1 in 00, 01, 10, and 11, and similarly for T3. I follows that,
given K = 2, (Z1, Z2) are purely random. To see this note that for any pair of bit (i, j)

Pr((Z1, Z2) = (i, j)|K = 2) = Pr((Z1, Z2) = (i, j)|X4 ∈ T1 ∪ T3)

= Pr((Z1, Z2) = (i, j)|X4 ∈ T1)Pr(X4 ∈ T1|X4 ∈ T1 ∪ T3)

+ Pr((Z1, Z2) = (i, j)|X4 ∈ T3)Pr(X4 ∈ T3|X4 ∈ T1 ∪ T3)

=
1

4
Pr(X4 ∈ T1|X4 ∈ T1 ∪ T3) +

1

4
Pr(X4 ∈ T3|X4 ∈ T1 ∪ T3)

=
1

4
.

All the elements in T0, T2, and T4 are mapped into Λ.

Exercise 8 (Entropy bound). Let p(x) be a probability mass function of random variable X . Prove
that

log(1/d)Pr{p(X) ≤ d} ≤ H(X)

for any d ≥ 0. Hint – Use Markov’s inequality.

Solution.

Pr{p(X) ≤ d} = Pr{− log p(X) ≥ − log d}

≤ E [− log p(X)]

− log d

by Markov’s inequality. The result follows by observing that E [− log p(X)] = H(X).


