Assignment 2

Exercise 1 (Block coding). Suppose a source generates $X_{1}, X_{2}, \ldots, X_{n}$ in an i.i.d. fashion and suppose we encode these symbols all at once, instead of symbol-by-symbol. Exhibit a coding scheme whose per-symbol expected length lies between $H(X)$ and $H(X)+1 / n$.

Solution. Use a Shannon code over a super-symbol $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$.
Exercise 2 (Bad codes). Which of the following binary codes cannot be a Huffman code for any distribution? Why?
a. $0,10,111,101$
b. $00,010,011,10,110$
c. $1,000,001,010,011$

Solution. a. A Huffman code is a prefix free code but here we have 10 which is a prefix of 101 .
b. This is not a Huffman code since codeword 110 does not have any sibling. Hence, the code could be improved by replacing this codeword with 11 .
c. This is a Huffman code for distribution $(0.4,0.15,0.15,0.15,0.15)$ for instance.

Exercise 3 (Huffman codes). For the distribution $\left(p_{1}, \ldots, p_{n}\right)$, where

$$
p_{1}>p_{2}>\cdots>p_{n}>0,
$$

we have an optimal binary prefix code. Show that
a. If $p_{1}>2 / 5$ then the corresponding codeword has length 1 .
b. If $p_{1}<1 / 3$ then the corresponding codeword has length at least 2 .

Solution. Consider the algorithm for constructing Huffman codes. Let $\left(q_{1}, \ldots, q_{k}\right), k \geq 1$ be the distribution at the $(n-k)$-th iteration of the algorithm, sorted in the decreasing order. Note that for $k=n,\left(q_{1}, \ldots, q_{k}\right)=\left(p_{1}, \ldots, p_{n}\right)$. In the next iteration, the two smallest probabilities, q_{k-1} and q_{k} are replaced by their sum $q_{k-1}+q_{k}$, then a Huffman code for set of probabilities $\left(q_{1}, \ldots, q_{k-2}, q_{k-1}+q_{k}\right)$ is constructed. Suppose the corresponding codes are $\left(C_{1}, \cdots, C_{k-1}\right)$, then the Huffman code for distribution $\left(q_{1}, \ldots, q_{k}\right)$ will be ($C_{1}, \cdots, C_{k-2}, C_{k-1} * 0, C_{k-1} * 1$) where $*$ denotes concatenation.
a. Suppose, by contradiction, that the codeword for p_{1} is greater or equal than 2 , and consider the first place where p_{1} becomes the second largest probability. More precisely, let

$$
q_{1} \geq q_{2} \geq \cdots \geq q_{k+1}
$$

$k \geq 3, q_{1}=p_{1}$ and $q_{k}+q_{k+1} \geq q_{1}$. Now, notice that $q_{2} \geq q_{k} \geq \frac{q_{k}+q_{k+1}}{2} \geq \frac{q_{1}}{2}$. So, we have

$$
\begin{aligned}
1 & =\sum_{i=1}^{k+1} q_{i} \geq q_{1}+q_{2}+q_{k}+q_{k+1} \\
& \geq q_{1}+\frac{q_{1}}{2}+q_{1}=\frac{5}{2} p_{1} \\
& >\frac{5}{2} \cdot \frac{2}{5}=1
\end{aligned}
$$

a contradiction.
b. Similarly as above consider $\left(q_{1}, q_{2}, q_{3}\right)$ with

$$
q_{1} \geq q_{2} \geq q_{3}
$$

and $q_{1}=p_{1}$. Then

$$
1=\sum_{i=1}^{3} q_{i} \leq 3 q_{1}=3 p_{1}<3 \cdot \frac{1}{3}=1
$$

a contradiction.

Exercise 4 (Huffman code for a wrong source). The purpose of this problem is to see what happens when you design a code for the wrong set of probabilities. Consider a Huffman code that is designed for a symbol source whose probability is given by P. Suppose that we use this code for the source with distribution Q. Find the average number of binary code symbols per source symbol and compare it with the entropy of the source for the following.

1. $P=(0.5,0.3,0.2), \quad Q=(0.65,0.2,0.15)$
2. $P=(0.5,0.3,0.2), \quad Q=(0.15,0.2,0.65)$
3. $P=(0.5,0.3,0.1,0.1), \quad Q=(0.3,0.2,0.3,0.2)$

Can the optimal codes for P and Q be the same?
Solution. Let $L(X)$ denote the length of the codeword for symbol X. Let $\mathbb{E}_{Q}[L]$ denote the expected value of $L(X)$ and $H_{Q}(X)$ denote the entropy when X has distribution Q.

1. A code for P is $(0,10,11)$ and $\mathbb{E}_{Q}[L]=0.65 \times 1+0.2 \times 2+0.15 \times 2=1.35$. We calculate the entropy to be $H_{Q}(X) \approx 1.28$. The optimal code for P and Q could be the same.
2. A code for P is $(0,10,11)$ and $\mathbb{E}_{Q}[L]=0.15 \times 1+0.2 \times 2+0.65 \times 2=1.65$. The entropy is the same as in the case above. The optimal code for P and Q are different but the set of codewords could be the same.
3. A code for P is $(0,10,110,111)$ and $\mathbb{E}_{Q}[L]=0.3 \times 1+0.2 \times 2+0.3 \times 3+0.2 \times 3=2.2$. We calculate the entropy to be $H_{Q}(X) \approx 1.97$.

Exercise 5 (Shannon code, divergence). Suppose we wrongly estimate the probability of a source of information, and that we use a Shannon code for a distribution Q whereas the true distribution is P. Show that

$$
H(P)+D(P \| Q) \leq L(C) \leq H(P)+D(P \| Q)+1
$$

So $D(P \| Q)$ can be interpreted as the increase in descriptive complexity due to incorrect information. Note that this interpretaion only holds for a Shannon code. For a Huffman code with $P=\left(\frac{1}{2}, \frac{1}{2}\right)$ and $Q=\left(2^{-50}, 1-2^{-50}\right)$ the inequality is violated.
Solution. For a Shannon code for distribution Q, the length of the codeword of a symbol X is $\left\lceil\log \frac{1}{Q(X)}\right\rceil$. Let $\mathbb{E}_{P}[\cdot]$ denote the expectation under the distribution P. Observe that

$$
\log \frac{1}{Q(X)} \leq\left\lceil\log \frac{1}{Q(X)}\right\rceil \leq \log \frac{1}{Q(X)}+1
$$

Then, the result follows from the following.

$$
\begin{aligned}
\mathbb{E}_{P}\left[\log \frac{1}{Q(X)}\right] & =\sum_{x} P(x) \log \frac{1}{Q(x)} \\
& =\sum_{x} P(x) \log \left(\frac{P(x)}{Q(x)} \frac{1}{P(x)}\right) \\
& =\sum_{x} P(x) \log \frac{P(x)}{Q(x)}+\sum_{x} P(x) \log \frac{1}{P(x)} \\
& =D(P \| Q)+H(P)
\end{aligned}
$$

Exercise 6 (Huffman Codes). The sequence of six independent realizations of source X is encoded symbol-by-symbol using a binary Huffman code. The resulted string is 10110000101 . We know that the alphabet of X has five elements and that its distribution is either $(0.4,0.3,0.2,0.05,0.05)$ or $(0.3,0.25,0.2,0.2,0.05)$. Which of them is the distribution of X ?
Solution. By the result in Exer.3b., every codeword in a Huffman code for the second distribution should be of length at least 2 . We know that there are 6 realizations of X and hence the string 10110000101 (of length 11) could not have been produced by a Huffman code for the second distribution. A possible Huffman code for the first distribution, namely ($0.4,0.3,0.2,0.05,0.05$) is $(1,01,000,0010,0011)$ (Note that Huffman codes are not unique!). Using this code, one can decode the string 10110000101 as $1,01,1,000,01,01$. Hence, the probability distribution of X is ($0.4,0.3,0.2,0.05,0.05$).

Exercise 7 (Pure randomness from biased distributions). Let $X_{1}, X_{2}, \ldots, X_{n}$ denote the outcomes of independent flips of a biased coin. Thus, for $i=1, \ldots, n$ we have $\operatorname{Pr}\left(X_{i}=1\right)=p, \operatorname{Pr}\left(X_{i}=0\right)=$ $1-p$, where p is unknown. We wish to obtain a sequence $Z_{1}, Z_{2}, \ldots, Z_{K}$ of fair coin flips from $X_{1}, X_{2}, \ldots, X_{n}$. To this end let $f: \mathcal{X}^{n} \rightarrow\{0,1\}^{\star}$ (where $\{0,1\}^{\star}=\{\Lambda, 0,1,00,01, \ldots\}$ is the set of all finite length binary sequences including the null string Λ) be a mapping $f\left(X_{1}, X_{2}, \ldots, X_{n}\right)=$ $\left(Z_{1}, Z_{2}, \ldots, Z_{K}\right)$, such that $Z_{i} \sim \operatorname{Bernoulli}(1 / 2)$ and where K possibly depends on $\left(X_{1}, \ldots, X_{n}\right)$. For the sequence $Z_{1}, Z_{2}, \ldots, Z_{K}$ to correspond to fair coin flips, the map f from biased coin flips to fair flips must have the property that all 2^{k} sequences $\left(z_{1}, z_{2}, \ldots, z_{k}\right)$ of a given length k have equal probability (possibly 0). For example, for $n=2$, the map $f(01)=0, f(10)=1, f(00)=f(11)=\Lambda$ has the property that $\operatorname{Pr}\left(Z_{1}=1 \mid K=1\right)=\operatorname{Pr}\left(Z_{1}=0 \mid K=1\right)=1 / 2$.
a. Justify the following (in)equalities

$$
\begin{aligned}
n H_{b}(p) & \stackrel{(a)}{=} H\left(X_{1}, \ldots, X_{n}\right) \\
& \stackrel{(b)}{\geq} H\left(Z_{1}, Z_{2}, \ldots, Z_{K}, K\right) \\
& \stackrel{(c)}{=} H(K)+H\left(Z_{1}, Z_{2}, \ldots, Z_{K} \mid K\right) \\
& \stackrel{(d)}{=} H(K)+E(K) \\
& \stackrel{(e)}{\geq} E(K)
\end{aligned}
$$

where $E(K)$ denotes the expectation of K. Thus, on average, no more than $n H_{b}(p)$ fair coin tosses can be derived from $\left(X_{1}, \ldots, X_{n}\right)$.
b. Exhibit a good map f on sequences of length $n=4$.

Solution. a. (a.) the X_{i} 's are i.i.d. $\operatorname{Bernoulli}(p)$ distributed; (b) $\left(Z^{K}, K\right)$ is a function of X^{n}; (c) chain rule; (d) given $K=k,\left(Z_{1}, Z_{2}, \ldots, Z_{k}\right)$ is an i.i.d. Bernoulli $(1 / 2)$ sequence, hence $H\left(Z_{1}, Z_{2}, \ldots, Z_{K} \mid K=k\right)=k$, from which the result follows; (d) non-negativity of the entropy.
b. One possibility is as follows. Let T_{k} be the set of binary sequences of length 4 with exactly k ones $(k \in\{0,1,2, \ldots, 4\})$. Observe that T_{1} and T_{3} each have four elements, and each contains equiprobable elements (obviously, the elements in T_{1} have a different probability than those in T_{3}. We map the 4 elements in T_{1} in $00,01,10$, and 11 , and similarly for T_{3}. I follows that, given $K=2,\left(Z_{1}, Z_{2}\right)$ are purely random. To see this note that for any pair of bit (i, j)

$$
\begin{aligned}
\operatorname{Pr}\left(\left(Z_{1}, Z_{2}\right)\right. & =(i, j) \mid K=2)=\operatorname{Pr}\left(\left(Z_{1}, Z_{2}\right)=(i, j) \mid X^{4} \in T_{1} \cup T_{3}\right) \\
& =\operatorname{Pr}\left(\left(Z_{1}, Z_{2}\right)=(i, j) \mid X^{4} \in T_{1}\right) \operatorname{Pr}\left(X^{4} \in T_{1} \mid X^{4} \in T_{1} \cup T_{3}\right) \\
& +\operatorname{Pr}\left(\left(Z_{1}, Z_{2}\right)=(i, j) \mid X^{4} \in T_{3}\right) \operatorname{Pr}\left(X^{4} \in T_{3} \mid X^{4} \in T_{1} \cup T_{3}\right) \\
& =\frac{1}{4} \operatorname{Pr}\left(X^{4} \in T_{1} \mid X^{4} \in T_{1} \cup T_{3}\right)+\frac{1}{4} \operatorname{Pr}\left(X^{4} \in T_{3} \mid X^{4} \in T_{1} \cup T_{3}\right) \\
& =\frac{1}{4}
\end{aligned}
$$

All the elements in T_{0}, T_{2}, and T_{4} are mapped into Λ.

Exercise 8 (Entropy bound). Let $p(x)$ be a probability mass function of random variable X. Prove that

$$
\log (1 / d) \operatorname{Pr}\{p(X) \leq d\} \leq H(X)
$$

for any $d \geq 0$. Hint - Use Markov's inequality.

Solution.

$$
\begin{aligned}
\operatorname{Pr}\{p(X) \leq d\} & =\operatorname{Pr}\{-\log p(X) \geq-\log d\} \\
& \leq \frac{\mathbb{E}[-\log p(X)]}{-\log d}
\end{aligned}
$$

by Markov's inequality. The result follows by observing that $\mathbb{E}[-\log p(X)]=H(X)$.

