
Telecom Paris ACCQ202, Information Theory

ASSIGNMENT 5

The solutions can be found in “Elements of Information Theory, Cover & Thomas, 2nd edition”.
We point to the relevant sections.

Define the differential entropy h(X) of a continuous random variable X with density f(x) as

h(X) = −
∫ ∞
−∞

f(x) log f(x)dx,

if the integral exists. The conditional differential entropy h(X|Y ) is defined analogously.

Exercise 1. Calculate the differential entropy for the following distributions:

a. Uniform distribution on [0, a], a > 0.

b. Gaussian distribution N (0, σ2).

Is h(X) always non-negative? Provide a proof or a counterexample.

For solution, see Examples 8.1.1 and 8.1.2.

Exercise 2. (Scaling and translation) For c a constant, how are h(cX) and h(X + c) related to h(X)?

For solution, see Theorems 8.6.3 and 8.6.4.

Exercise 3. (Relation to discrete entropy) Consider a random variable X with density f(x). Divide
the range of X into consecutive segments of length ∆. Assume that the density is continuous within
the segments. By the mean value theorem, there exists a value xi within each segment i such that

f(xi)∆ =

∫ (i+1)∆

i∆
f(x)dx.

Consider the quantized random variable X∆, defined by X∆ = xi if i∆ ≤ X < (i+ 1)∆.

a. Calculate the (discrete) entropy H(X∆).

b. Conclude that under suitable conditions1, as ∆→ 0,

H(X∆) + log ∆→ h(X).

c. Interpret the result as: the entropy of an n-bit quantization of a continuous random variable X
is approximately h(X) + n by considering X ∼ Unif [0, 1] and X ∼ N (0, 1).

For solution, see Section 8.3.

Exercise 4. (KL divergence) Define the KL divergence between two densities f and g as

D(f ||g) =

∫
f(x) log

f(x)

g(x)
dx.

1If f(x) log f(x) is Riemann integrable



a. Using Jensen’s inequality, prove that D(f ||g) is always non-negative.

b. Show that for a random variable X ∼ f with variance σ2,

h(X) ≤ 1

2
log 2πeσ2

with equality if and only if X is a Gaussian random variable with variance σ2.
Hint – Calculate the KL divergence between f and the Gaussian density.

For solution, see Theorems 8.6.1 and 8.6.5.

Exercise 5. (Mutual information) Define the mutual information between continuous random variables
X and Y with joint distribution fXY (x, y) and marginals fX(x) and fY (y) as

I(X;Y ) = D(fXY ||fXfY ).

a. Show that I(X;Y ) = h(Y )− h(Y |X).

b. Consider independent random variables X and Z with Z ∼ N (0, N) and E[X2] ≤ P . Let
Y = X + Z. Show that

C , max
f(x):EX2≤P

I(X;Y ) =
1

2
log

(
1 +

P

N

)
. (1)

Hint – Prove the inequality (without the max) first and exhibit an example distribution of X
(Gaussian?) for which the inequality becomes an equality.

The solution to part (a.) follows from the definition of mutual information. For solution to part
(b.), see Section 9.1, Eqn.9.8− 9.17.

Exercise 6. (AEP for continuous random variables) Define the volume of a set A ⊂ Rn as

V ol(A) =

∫
A
dx1dx2 · · · dxn.

For ε > 0 and any n, define the typical set A(n)
ε with respect to f(x) as follows:

A(n)
ε =

{
(x1, . . . , xn) :

∣∣∣∣− 1

n
log f(x1, . . . , xn)− h(X)

∣∣∣∣ ≤ ε} ,
where f(x1, . . . , xn) =

∏n
i=1 f(xi).

a. Prove the following for a typical set.

1. P(A
(n)
ε ) > 1− ε for n sufficiently large.

2. V ol(A(n)
ε ) ≤ 2n(h(X)+ε).

3. V ol(A(n)
ε ) ≥ (1− ε)2n(h(X)−ε) for n sufficiently large.



b. Do the arguments above extend to joint distributions? Define the typical set A(n)
ε with respect to

fXY (x, y) (with marginals fX and fY ) as

A(n)
ε =

{
(xn, yn) :

∣∣∣∣− 1

n
log fX(xn)− h(X)

∣∣∣∣ ≤ ε, ∣∣∣∣− 1

n
log fY (yn)− h(Y )

∣∣∣∣ ≤ ε,∣∣∣∣− 1

n
log fXY (xn, yn)− h(X,Y )

∣∣∣∣ ≤ ε
}
.

Prove the following: If (X
n
, Y

n
) ∼ fX(xn)fY (yn), then

P(X
n
, Y

n
) ∈ A(n)

ε ) ≤ 2−n(I(X;Y )−3ε).

c. If Xi are drawn i.i.d. from a distribution f such that EX2
i ≤ P − ε where P − ε > 0, argue that

the probability of the event

E0 =

{
1

n

n∑
i=1

X2
i > P

}
goes to 0 as n→∞.

For solution, see point 4 in the proof of Theorem 9.1.1.

Exercise 7. (Achievability for Gaussian channels) Consider a time-discrete channel with output Yi at
time i, where Yi is the sum of the input Xi and noise Zi independent of Xi with Zi ∼ i.i.d. N (0, N).
If there is a power constraint, namely, for any codeword (x1, x2, . . . , xn) transmitted over the channel,
we require that

1

n

n∑
i=1

x2
i ≤ P.

Following the arguments in the proof of achievability in the discrete channel coding theorem (and the
previous exercise), show that the maximum rate of communication over this channel, R > C − ε for
every ε > 0 where C is as defined in (1).

For solution, see the proof of Theorem 9.1.1.

Exercise 8. (Converse for Gaussian channels) Consider any (2nR, n) code that satisfies the power
constraint, that is,

1

n

n∑
i=1

xi(w)2 ≤ P,

for w = 1, 2, . . . , 2nR. Let Pi denote the average power of the i-th column of the codebook, that is,

Pi =
1

2nR

∑
w

xi(w)2 = Pi.

a. Let W be distributed uniformly over {1, 2, . . . , 2nR}. Let Ŵ be the estimate of W based on Y n. Let
εn → 0 as probability of error for the code goes to 0. Justify the steps with labels on the equality or the



inequality signs.

nR = H(W ) = I(W ; Ŵ ) +H(W |Ŵ )

(a)

≤ I(W ; Ŵ ) + nεn
(b)

≤ I(Xn;Y n) + nεn

= h(Y n)− h(Y n|Xn) + nεn
(c)
= h(Y n)− h(Zn) + nεn

(d)
=

n∑
i=1

h(Yi)− h(Zi) + nεn.

b. Calculate E[Y 2
i ]. Using the argument in Exer. 5b, show that

nR ≤ 1

2

n∑
i=1

log

(
1 +

Pi
N

)
+ nεn.

c. Is it true that 1
n

∑n
i=1 Pi ≤ P ?

d. Use Jensen’s inequality to conclude that

R ≤ 1

2
log

(
1 +

P

N

)
for any code for which the probability of error goes to 0.

For solution, see Section 9.2.


