Telecom Paris ACCQ202, Information Theory

ASSIGNMENT 5

The solutions can be found in “Elements of Information Theory, Cover & Thomas, 2nd edition”.
We point to the relevant sections.

Define the differential entropy h(X) of a continuous random variable X with density f(x) as
o0
W) = [ fla)log f(a)da,
—00

if the integral exists. The conditional differential entropy h(X|Y) is defined analogously.
Exercise 1. Calculate the differential entropy for the following distributions:
a. Uniform distribution on [0, a], a > 0.
b. Gaussian distribution N/(0, o).
Is h(X) always non-negative? Provide a proof or a counterexample.
For solution, see Examples 8.1.1 and 8.1.2.
Exercise 2. (Scaling and translation) For ¢ a constant, how are h(cX) and h(X + c) related to h(X)?
For solution, see Theorems 8.6.3 and 8.6.4.

Exercise 3. (Relation to discrete entropy) Consider a random variable X with density f(z). Divide
the range of X into consecutive segments of length A. Assume that the density is continuous within
the segments. By the mean value theorem, there exists a value x; within each segment ¢ such that

(i+1)A
flx)A = /A f(x)dx.

Consider the quantized random variable X2, defined by X2 = z; if iA < X < (i 4+ 1)A.
a. Calculate the (discrete) entropy H(X2).
b. Conclude that under suitable conditions!, as A — 0,

H(X2) +1og A = h(X).

c. Interpret the result as: the entropy of an n-bit quantization of a continuous random variable X
is approximately h(X) + n by considering X ~ Unif [0, 1] and X ~ N(0,1).

For solution, see Section 8.3.

Exercise 4. (KL divergence) Define the KL divergence between two densities f and g as

D(fllg) = / /(@) 1og§§jj§dx.

'If f(x)log f(x) is Riemann integrable




a. Using Jensen’s inequality, prove that D( f||g) is always non-negative.

b. Show that for a random variable X ~ f with variance o2,

2

hX) < =log2meo

N =

with equality if and only if X is a Gaussian random variable with variance o2.

Hint — Calculate the KL divergence between f and the Gaussian density.
For solution, see Theorems 8.6.1 and 8.6.5.

Exercise 5. (Mutual information) Define the mutual information between continuous random variables
X and Y with joint distribution fxy (z,y) and marginals fx (x) and fy (y) as

I(X;Y) = D(fxv|lfx fr)-
a. Show that I(X;Y) = h(Y) — h(Y|X).

b. Consider independent random variables X and Z with Z ~ A(0,N) and E[X?] < P. Let
Y = X + Z. Show that

2 vy 1 r
Cc= f(:p)r:?E%(}ggPl(X’Y) =3 log <1 + N) . (D

Hint — Prove the inequality (without the max) first and exhibit an example distribution of X
(Gaussian?) for which the inequality becomes an equality.

The solution to part (a.) follows from the definition of mutual information. For solution to part
(b.), see Section 9.1, Eqn.9.8 — 9.17.

Exercise 6. (AEP for continuous random variables) Define the volume of a set A C R"” as
Vol(A) = / dzidzs - - - dz,,.
A

g

For € > 0 and any n, define the typical set A"’ with respect to f(x) as follows:

A0 = { (a1 ]—ilogfm,...,xn) - h(X)’ <},

where f(x1,...,2n) = [[72, f(24).
a. Prove the following for a typical set.
1. IP’(AE”)) > 1 — ¢ for n sufficiently large.
2. Vol(A™) < an(h(X)+e),
3. Vol(A™) > (1 — €)27((X)=9) for  sufficiently large.



b. Do the arguments above extend to joint distributions? Define the typical set AE")

fxv(z,y) (with marginals fx and fy) as

with respect to

AP {w,y") |- tom @ < 00| < 6 |- 10g 07 - ) <

1 |
‘—711 log fxy(z",y") — h(X,Y)‘ < e}.

Prove the following: If (X, Y"") ~ fx(z") fy (y™), then

P(Yn,?n) S A(")) < 9—n(I(X;Y)—3€)

€

c. If X; are drawn i.i.d. from a distribution f such that EX? < P — ¢ where P — ¢ > 0, argue that

the probability of the event
1 n
Ey = {n 2 X? > P}
1=

goes to 0 as n — oo.
For solution, see point 4 in the proof of Theorem 9.1.1.

Exercise 7. (Achievability for Gaussian channels) Consider a time-discrete channel with output Y; at
time ¢, where Y; is the sum of the input X; and noise Z; independent of X; with Z; ~ i.i.d. N'(0, N).
If there is a power constraint, namely, for any codeword (x1, x9, . . ., z,,) transmitted over the channel,

we require that
I~ o
i=1

Following the arguments in the proof of achievability in the discrete channel coding theorem (and the
previous exercise), show that the maximum rate of communication over this channel, R > C — € for
every € > 0 where C'is as defined in (1).

For solution, see the proof of Theorem 9.1.1.

Exercise 8. (Converse for Gaussian channels) Consider any (2", n) code that satisfies the power
constraint, that is,

LY < P
- T
n - W) = I,
=1
forw =1,2,...,2"% Let P; denote the average power of the i-th column of the codebook, that is,

1
P = gum 2 wi(w)’ = Pu
w

. Let W be distributed uniformly over {1,2,...,2"%}. Let W be the estimate of W based on Y™. Let
€, — 0 as probability of error for the code goes to 0. Justify the steps with labels on the equality or the



inequality signs.
nR=H(W)=I(W;W) + HW|W)
< I(W; W) + ney

I(X™Y") 4+ ne,
=h(Y") — h(Y"X") + ne,

2 hY™) = h(Z"™) + ney

DS h(Y) - h(Z:) + nen.

b. Calculate E[Y;?]. Using the argument in Exer. 5b, show that

1< P,
nR < 2;10g <1+J\;> + ney,.

. 1 n
c. Isittrue that - > " | P; < P?

d. Use Jensen’s inequality to conclude that

1 P
< — —
R_210g<1+ U>

for any code for which the probability of error goes to 0.

For solution, see Section 9.2.



