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Most Informative Quantization Functions
V. Chandar (MIT Lincoln) and A. Tchamkerten (Telecom ParisTech)

Abstract—This note provides some insights to an intriguing
quantization problem recently posed by Kumar and Courtade.
Any feedback is welcome.

I. THE PROBLEM

Throughout this note Xn denotes a randomly and uniformly
chosen vector in {0, 1}n and Y n denotes a random observation
of Xn through a binary symmetric channel with crossover
probability p ∈ [0, 1/2). Given an integer k ≥ 1 we want to
find the k-bit quantization of Xn which induces the largest
mutual information with Y n, that is we are interested in

I(k, n)
def
= max

f∈Sn,k

I(f(Xn);Y n)

where
Sn,k

def
= {f : {0, 1}n → {0, 1}k}.

This problem was posed by Kumar and Courtade in [1] for
k = 1, where it is conjectured that

I(1, n) = 1− h(p)

for any n ≥ 1, and h(p)
def
= −p log p−(1−p) log(1−p) where

the logarithm is to the base 2. If the conjecture is true, then
any binary function of the form f(Xn) = Xi, 1 ≤ i ≤ n,
achieves the maximum.

More generally we could ask whether I(k, n)/k equals to
1 − h(p) for any integers k ≥ 1 and n ≥ 1. Surprisingly
perhaps, the answer turns out to be negative.

II. PROPERTIES OF I(k, n) AND POSITIVE RATES LIMITS

We make some preliminary observations regarding the func-
tion I(k, n).

Since I(n, k) ≤ k and since, for fixed k, I(k, n) is a non-
decreasing function of n (we can always extend a function
defined for a given n1 to n2 > n1 by ignoring the extra
symbols Xn2

n1+1 and achieve the same mutual information) the
function

I(k)
def
= lim

n→∞ I(k, n)

is well defined for any k ≥ 1 and also satisfies

I(k) = sup
n≥1

I(k, n).

This function is also super-additive, i.e., for any k ≥ 1 and
l ≥ 1

I(k + l) ≥ I(k) + I(l).

This property reflects the fact that, given some input X2n
1 , we

can always quantize the first n bits to k bits and the remaining
n bits to l bits. Fekete’s lemma then guarantees that

lim
k→∞

I(k)/k

is well defined and is equal to

sup
k≥1

I(k)

k
.

It follows that

lim
k→∞

lim
n→∞

I(k, n)

k
= sup

k,n

I(k, n)

k
,

which is lower bounded by the value of I(k,n)
k for any k and n.

The following theorem can be attributed to Erkip and Cover
[2, Section IV] and to earlier work from Witsenhausen and
Wyner [3]. In the former work the problem is studied in the
context of horse race betting with Y n interpreted as a sequence
of outcomes of a two-horse race and f(Xn) interpreted as
side information provided to a bettor. An alternate proof that
appeals to rate distortion theory is provided thereafter.

Theorem 1: For any integers k ≥ 1 and n ≥ 1 we have1

I(k, n)

k
≤ 1− h(p � h−1(1−R))

R

where R
def
= k/n. Moreover, for any fixed 0 < R ≤ 1

lim
n→∞

I(k = Rn, n)

n
= 1− h(p � h−1(1−R)).

It can be checked that the function

1− h(p � h−1(1−R))

R

is a monotonically decreasing function of R, which is equal
to 1− h(p) for R = 1 and satisfies

lim
R↓0

1− h(p � h−1(1−R))

R
= (1− 2p)2.

Hence
I(k, n)

k
≤ (1− 2p)2 + ε(R)

with ε(R) ↓ 0 as R → 0. Since I(k, n) is non-decreasing in
n we deduce the following corollary:

Corollary 1: For any integers k ≥ 1 and n ≥ 1 we have

I(k, n)

k
≤ (1− 2p)2.

Moreover,

lim
k→∞

lim
n→∞

I(k, n)

k
= (1− 2p)2.

The previous results imply that for k and n large enough
I(k, n)/n surpasses 1 − h(p), but how large should these
be? A partial answer to this question is provided by the

1p�q
def
= p(1−q)+(1−p)q and h−1(q) is defined as the value in [0, 1/2]

whose binary entropy is equal to q.
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Fig. 1. The lower curve is 1 − h(p) and the upper curve represents the
(normalized) mutual information attained from the quantization map derived
from the [n = 23, k = 12, d = 7] Golay code.

[n = 15, k = 11, d = 3] Hamming code and the [n =
23, k = 12, d = 7] Golay code which surpass the 1 − h(p)
bound for a large range of p.2 For the Hamming code, the
range is approximately .05 ≤ p ≤ .5, and for the Golay
code, the range is approximately .04 ≤ p ≤ .5 (see Fig. 1)).
Both the Hamming and the Golay code are perfect codes,
however not all perfect codes exceed the bound; for instance,
the [7, 4, 3] Hamming code does not. It would be interesting
to exhibit other quantization functions, possibly derived from
linear codes, which surpass the bound with values of k < 11.3

As we shall see, Theorem 1 can be extended to some other
channels since the basic ingredient of its proof is a convexity
argument which holds for some other channels as well.

Proof of Theorem 1: We first establish the upper bound
on I(k, n). Since Y n is uniformly distributed,

I(f(Xn);Y n) = n−H(Y n|f(Xn)) .

Consider a particular k-bit string z, and assume that the
preimage of z under f

f−1(z)
def
= {xn : f(xn) = z}

has size 2ns(z). Then, because Xn is uniform, Mrs. Gerber’s
lemma implies that

H(Y n|f(Xn) = z) ≥ nh(p � h−1(s(z))) .

2Recall that a quantization map can be derived from an (n, k) code by
mapping Xn to the message sequence whose codeword is the closest to Xn.

3We consider perfect codes because the symmetry of the quantizer re-
gions makes an exact computation of I(f(Xn); Y n) simpler. Specifically,
H(Y n|f(Xn) = c) is independent of the value c for a perfect code, and
simply corresponds to the output entropy when the input to the channel is
uniform over a Hamming ball with radius equal to the error-correction radius
of the code, i.e., radius 1 for Hamming codes and radius 3 for the Golay code.
Because of permutation symmetry, the output distribution assigns the same
probability to all strings of a given Hamming weight. The output distribution
can thus be characterized by n+ 1 numbers instead of the 2n required for
an arbitrary probability distribution which allows to efficiently compute the
mutual information. The expressions for the mutual information are unwieldy
but straightforward to obtain and are thus omitted in this note.

Therefore,

H(Y n|f(Xn)) =
∑

z∈{0,1}k

H(Y n|f(Xn) = z)2n(s(z)−1)

≥
∑

z∈{0,1}k

nh(p � h−1(s(z))2n(s(z)−1) (1)

where
p � q

def
= p(1 − q) + (1 − p)q.

We now show that the above final expression is minimized
when s(z) = 1 − k/n for all z ∈ {0, 1}k, i.e., when f is
uniformly distributed over {0, 1}k. Specifically, the function

ah

(
p � h−1

(
log a

n

))

is convex over the range 1 ≤ a ≤ 2n. This can be seen as
follows. The function

F (x)
def
= h

(
p � h−1 (x)

)
is monotonic increasing and convex over the range 0 ≤ x ≤ 1
[4]. Now,

d2

da2
ah

(
p � h−1

(
log a

n

))

=

(
2
log e

an
− log e

an

)
dF

dx
+

(log e)2

an2

d2F

dx2
,

is positive since a ≥ 1 and since both dF
dx and d2F

dx2 are positive.
Finally, since

ah

(
p � h−1

(
log a

n

))

is convex in a, it follows that∑
z∈{0,1}k

nh(p � h−1(s(z))2n(s(z)−1)

is minimized when s(z) is the same for all values of z.
Hence∑

z∈{0,1}k

nh(p � h−1(s(z))2n(s(z)−1) ≥ nh(p � h−1(1− k/n))

and we deduce that

I(k, n)

k
≤ 1− h(p � h−1(1−R))

R

where R
def
= k/n.

To prove the second part of the theorem it suffices to prove
that

lim inf
n→∞

I(k = Rn, n)

n
≥ 1− h(p � h−1(1−R)). (2)

We do this through rate-distortion theory. Specifically, we
choose the function to be the encoder of a random code for
the rate-distortion problem of quantizing a binary symmetric
source under Hamming distortion dH . From standard results
on the rate-distortion problem [5] it is known that, for any
0 < R ≤ 1,

Pr
{
dH(Xn, f(Xn)) > nh−1(1−R) +

√
3n log(n)

}
= 0
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where the randomness comes from both Xn and f . For such
a random function f we can bound H(Y n|f(Xn) = c) for
any value c as follows. Given that f(Xn) = c, the conditional
distribution of Xn is uniform over a subset of a Hamming
ball with radius nh−1(1 − R) +

√
3n log(n). Therefore, Y n

is concentrated on a Hamming ball with radius approximately
n(p�h−1(1−R)). Proceeding formally, let E be the indicator
random variable for the event

{dH(Y n, f(Xn) = c) > (p � h−1(1−R)) +
√
10n log(n)} .

Then,

H(Y n|f(Xn) = c) ≤ H(Y n, E|f(Xn) = c)

= H(E|f(Xn) = c)

+ Pr{E = 1}H(Y n|E = 1, f(Xn) = c)

+ Pr{E = 0}H(Y n|E = 0, f(Xn) = c)

≤ 1 + nPr{E = 1}+H(Y n|E = 0, f(Xn) = c). (3)

From Azuma’s inequality

Pr{E = 1} <
1

n
. (4)

The term H(Y n|E = 0, f(Xn) = c) is at most the logarithm
of the number of strings in a Hamming ball of radius

n(p � h−1(1−R)) +
√
10n log(n)

which can be approximated using standard bounds on binomial
coefficients to obtain

H(Y n|E = 0, f(Xn) = c)

≤ nh(p � h−1(1−R)) +O(
√

n log(n)). (5)

From (3), (4), and (5) we get

H(Y n|f(Xn)) ≤ nh(p � h−1(1−R)) +O(
√

n log(n)).

Hence

I(Rn, n) ≥ I(f(Xn);Y n)

≥ n(1− h(p � h−1(1−R)))−O(
√

n log(n)),
(6)

which implies the desired inequality (2).
Remark 1: Observe that Theorem 1 can be extended to other

channels as well. In particular, the key ingredient in the proof
of the upper bound is the convexity property of the function
F (x). The corresponding function, for instance, for binary
input symmetric channel with inputs {0, 1}, is the function [6]

FPY |X (x)
def
= H(PY |X � h−1(x))

where H(·) denotes the usual entropy and where

PY |X�h−1(x) = PY |x=0(y)h
−1(u)+PY |x=1(y)h

−1(1−h−1(u))

denotes the output distribution of the channel when

P(X = 0) = h−1(u) = 1− P(X = 1).

III. SUBOPTIMALITY OF LEX FUNCTIONS

Conjecture 2 in [1] states that subject to a given car-
dinality constraint |f−1(0)|, or equivalently, a given bias
Pr(f(Xn) = 0), the lexicographic function maximizes the
mutual information. We show that this claim is incorrect:

Theorem 2: For fixed 0 < p < 1/2 and any n large enough
there exists cardinalities |f−1(0)| for which lexicographic
functions achieve a strictly lower mutual information than
suitable functions (with the same cardinality constraint).

Proof: Fix 0 < α < 1/2 and let

�
def
= �nh(α)�.

Consider the lex function flex(X
n) corresponding to the set

of all strings where the first � bits are equal to 0, hence
|f−1

lex(0)| = 2n−�. Let w be the smallest value such that(
n

w

)
≥ 2n−�.

Let S be an arbitrary subset of size 2n−� of the set of strings
with Hamming weight w and define the pseudo-“threshold”
function ft so that ft(Xn) = 0 if and only if Xn belongs to
this subset. Hence we have

P(flex(X
n) = 0) = P(ft(X

n) = 0) = 2−�.

We show that

H(Y n|flex(Xn)) > H(Y n|ft(Xn))

for sufficiently large n, which yields the desired result since
H(Y n) = n.

First we expand the entropies as

H(Y n|flex(Xn)) =2−�H(Y n|flex(Xn) = 0)

+ (1 − 2−�)H(Y n|flex(Xn) = 1) (7)

H(Y n|ft(Xn)) =2−�H(Y n|ft(Xn) = 0)

+ (1 − 2−�)H(Y n|ft(Xn) = 1) (8)

We now lower bound H(Y n|flex(Xn)). It is easy to check
that

H(Y n|flex(Xn) = 0) = n− �+ �h(p).

Now since

H(Xn|flex(Xn) = 1) = n+ log(1− 2−�) > n− 2−�2 log(e)

for sufficiently large � (or large enough n), Mrs. Gerber’s
lemma trivially implies that

H(Y n|flex(Xn) = 1) ≥ n− 2−�2 log(e).

Therefore

H(Y n|flex(Xn)) ≥2−� (n− �+ �h(p))

+ (1− 2−�)
(
n− 2−�2 log(e)

)
= n− n2−�h(α) (1− h(p))

− 2−�2 log(e)(1 − 2−�) (9)

for n large enough.
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We now upper bound H(Y n|ft(Xn)). We upper bound
H(Y n|ft(Xn) = 1) as

H(Y n|ft(Xn) = 1) ≤ n.

To upper bound H(Y n|ft(Xn) = 0), let wt(Y n) denote the
weight of Y n and let E denote the indicator function of the
event

{wt(Y n) ≥ ŵ}
where

ŵ
def
= n

(w
n

� p
)
+
√
2n loge(n).

We have

H(Y n|ft(Xn) = 0)

≤ H(Y n, E|ft(Xn) = 0)

= H(E|ft(Xn) = 0) +H(Y n|E, ft(X
n) = 0)

= H(E|ft(Xn) = 0)

+ Pr(E = 0)H(Y n|E = 0, ft(X
n) = 0)

+ Pr(E = 1)H(Y n|E = 1, ft(X
n) = 0).

Note that when the input Xn has Hamming weight w, the
expected Hamming weight of the output Y n obtained by pass-
ing Xn through the BSC(p) is exactly n

(
w
n � p

)
. Therefore,

Azuma’s inequality implies that

Pr{E = 1} ≤ e− loge(n) =
1

n
.

Thus, we obtain the upper bound

H(Y n|ft(Xn) = 0)

≤ 1 +H(Y n|E = 0, ft(X
n) = 0) +

1

n
n

≤ 2 + log (Vol(n, ŵ))

where Vol(n, ŵ) denotes the number of strings with Hamming
weight at most ŵ in the n-dimensional Hamming space. To
bound log (Vol(n, ŵ)), first observe that Stirling’s approxima-
tion

nne−n
√
2πn ≤ n! ≤ nne−ne

√
n

implies that w satisfies

w = nh−1(1− h(α)) +O(log(n)),

where the constant hidden in the big-O only depends on α.
Therefore, standard bounds on binomial coefficients imply that

log (Vol(n, ŵ)) ≤ nh
(
h−1(1− h(α)) � p

)
+O

(√
n log(n)

)
,

where the constant hidden in the big-O depends only on α
and p. We conclude that

H(Y n|ft(Xn))

≤ 2−�
(
nh

(
h−1(1− h(α)) � p

)
+O

(√
n log(n)

))
+ n(1− 2−�)

= n− 2−�n
(
1− h

(
h−1(1− h(α)) � p

))
+O

(
2−�

√
n log(n)

)
.

Comparing the above upper bound with (9) we see that

H(Y n|flex(Xn)) > H(Y n|ft(Xn))

for sufficiently large n provided that α satisfies

h
(
h−1(1− h(α)) � p

)
< 1− h(α) + h(α)h(p). (10)

Now because of the strict convexity of

h(h−1(q) � p)

as a function of q (see, e.g., Lemma 2 of [4]), it follows that the
above inequality is in fact always satisfied for any 0 < α < 1
and 0 ≤ p < 1/2. Indeed, inequality (10) has the following
interpretation. Consider an arbitrary distribution over Xn with
entropy at least n(1− h(α)). Then, the left-hand side of (10)
is the minimum entropy of Y n given by Mrs. Gerber’s lemma,
and this minimum is achieved by a distribution over Xn

consisting of i.i.d. bits with bias h−1(1 − h(α)). The right
hand side, however, is the entropy of Y n when Xn has a
distribution such that the first n(1 − h(α)) bits are uniform,
and the remaining bits are identically 0.

To summarize, we have shown that for any 0 < p < 1/2,
if n is sufficiently large (as a function of p and α), then

I(flex(X
n);Y n) < I(ft(X

n);Y n).

The analysis can be refined to show that lex functions are
suboptimal not just for the special case where |f−1

lex(0)| is
precisely a power of two sufficiently small compared to n, but
in fact are generally suboptimal for n large enough for a broad
range, e.g., 2.00001n ≤ |f−1

lex(0)| ≤ q2n for some constant q
independent of n. This is left as an exercise for the reader.

Remark 2: The above proof shows that lex functions are sub-
optimal by considering small enough cardinalities |f−1(0)|.
However a simple calculation using Mrs. Gerber’s lemma to
lower bound conditional entropy terms shows that if a function
f is such that

|f−1(0)| = b2n,

then
I(f(Xn);Y n) ≤ H(b)(1− 2p)2.

This in turn places bounds on the range of the bias b where
any counterexamples to the main conjecture can be found. It
is easily verified that

inf
p

1− h(p)

(1− 2p)2
=

log(e)

2
,

hence any

α < h−1

(
log(e)

2

)

cannot violate the conjecture.
Our previous analysis therefore only proves the subopti-

mality of lex functions in a regime where no function can
violate the conjecture anyway. However our analysis suggests
an interesting phase transition between two types of behavior;
for biased functions, pseudo-threshold functions are asymp-
totically optimal, while for nearly balanced functions, dictator
functions appear to be optimal.
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IV. AN ENTROPY POWER INEQUALITY FOR RENYI
ENTROPIES?

We observe that the problem of maximizing mutual infor-
mation is closely related to the following problem.

Problem 1: Find

minH(Y1, . . . , Yn)

subject to
H∞(X1, . . . , Xn) > h.

In Problem 1, H∞ denotes the min-entropy,4 and as usual
Yi is obtained by passing Xi through a BSC with crossover
probability p. The relationship of Problem 1 to the original
problem of maximizing the mutual information is the follow-
ing. We have

I(f(Xn);Y n) = H(Y n)− P(f(Xn) = 0)H(Y n|f(Xn) = 0)

− P(f(Xn) = 1)H(Y n|f(Xn) = 1),
(11)

and each of the conditional entropy terms can be lower
bounded in terms of the solution to Problem 1 where h is
set to

n+ log(P(f(Xn) = 0))

and
n+ log(P(f(Xn) = 1)),

respectively.
The entropy minimization in Problem 1 is reminiscent of

Mrs. Gerber’s lemma; if we replace the min-entropy constraint
on the input distribution with a Shannon entropy constraint,
then Mrs. Gerber’s lemma provides the exact solution. More
generally, we can consider

Problem 2:
minHα(Y1, . . . , Yn)

subject to
Hβ(X1, . . . , Xn) > h.

In the statement of Problem 2, Hα and Hβ denote the
Renyi entropies of order α and β, respectively. Problem 1
corresponds to the case α = 1 and β = ∞ in Problem 2. Since
Mrs. Gerber’s lemma, which corresponds to the α = β = 1
case of Problem 2, can be viewed as the binary version of the
entropy power inequality, we can interpret the entropy mini-
mization Problem 2 as an entropy power inequality for Renyi
entropies. Recall that the Renyi entropy is monotonically non-
increasing with respect to the order of the entropy. Hence we
can derive lower bounds on the solution to Problem 2 with
α = 1 and β = ∞ by relaxing the problem, e.g., by solving
Problem 2 for a larger value of α and/or a smaller value of
β. A detailed study of Problem 2 for general α, β, and h is

4Given a discrete random variable X the min-entropy

H∞
def
= inf

i
log

1

pi

where pi
def
= P(X = i).

beyond the scope of this note, but we make a few preliminary
observations below.
α = 1, relax β: Mrs. Gerber’s gives the solution to

Problem 2 for α = β = 1. Interestingly, when α = 1,
the relevant regime for the parameter h is h > n − C, for
some constant C independent of n. The reason is that if h is
small enough, then there is almost no difference between the
Shannon entropy (β = 1) and the entropy of any other order
β; the solution given by Mrs. Gerber’s lemma is an essentially
tight lower bound to the solution for general β > 1 if h is small
enough. The proof is straightforward. It suffices to exhibit a
distribution on (X1, X2, . . . , Xn) such that

H∞(X1, . . . , Xn) ≥ h

and
H1(Y1, . . . , Yn) ≈ nh(h−1(

h

n
) � p).

One such distribution is the uniform distribution over the
strings with Hamming weight nh−1(hn ). This can be shown
through a similar calculation to the one used to prove that
threshold functions have higher mutual information than lex
functions.

Hence, if h ≤ n − C, then the optimal input distribution
is approximately given by a uniform distribution over a
Hamming ball. Assuming the validity of the original Boolean
conjecture that the maximum achievable mutual information
is 1 − h(p), this suggests the same conclusion as the one at
the end of Section III; for sufficiently biased functions, the
most informative function is a threshold function based on
the Hamming weight, while for nearly balanced functions, the
most informative function is simply the first bit.

Analogously to the proof of Mrs. Gerber’s lemma, another
direction is to consider the function5

Fα,β(x) � hα(p � h
−1
β (x)).

The function F1,1 corresponds to the function F in Mrs.
Gerber’s lemma. A crucial step in the proof of this lemma is
to show that the function g is a convex function. Interestingly,
Fα=1,β(x) quickly becomes concave when β increases. For
instance, for β > 1.6, we have observed numerically that
Fα=1,β(x) is concave for all p < .49. In particular, the case
β = 2 would be of interest since Fourier techniques can
potentially be brought to bear in this case.

Note that when Fα=1,β(x) is concave, if we add the extra
constraint that the input variables Xi should be independent,
then it can be shown that the optimal solution is the following:
the bias of the Bernoulli distribution of each Xi is either 1/2
(fair coin flip) or 0 (deterministic) and the number of random
variables Xi with bias 1/2 is h so as to satisfy the input
entropy constraint. In particular, if h = n− 1 or, equivalently,
P(f(Xn) = 0) = P(f(Xn) = 1) = 1/2, then there is only
one deterministic Xi, equivalently, f is a dictator function.

Relax α, β = 1: A natural relaxation for α is to set α = 2,
since Fourier techniques can potentially be brought to bear in
this case. Unfortunately, the best bound for Problem 2 when
α = 2 and β = ∞ is worse than the α = 1 and β = 1 case.

5hβ denotes the binary Renyi entropy of order β.
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Specifically, consider h = n− 1. Then Mrs. Gerber’s Lemma
gives the lower bound

H1(Y1, . . . , Yn) ≥ n− (1− 2p)2.

By considering the uniform distribution over all strings whose
first coordinate is 0, however, we find that

H2(Y1, . . . , Yn) ≤ n− 1− log(p2 + (1− p)2).

It can be shown that

n− 1− log(p2 + (1− p)2) ≤ n− (1− 2p)2,

hence, in order to improve on the mutual information bound
given by Mrs. Gerber’s Lemma, we cannot relax the output
entropy constraint significantly but must instead consider α
close to 1.

MINIMIZING ERROR PROBABILITY INSTEAD OF
MAXIMIZING MUTUAL INFORMATION

Given the channel output Y n suppose we wish to guess the
value of a binary function f(Xn). What function minimizes
the error probability? In this section we show that dictator
functions, i.e., functions of the form f(Xn) = Xi, are optimal
among balanced function. The arguments here closely follow
the arguments that show that dictator functions maximize
stability (see, e.g., [7, Proposition 49, Section 2.4]).

Theorem 3: Dictator functions minimize the error probabil-
ity among balanced function.

Proof: Define the Fourier transform of a function

f : Zn
2 → C

as
F(f)(x)

def
= 2−n

∑
y∈Zn

2

f(y)(−1)x·y,

where x ·y denotes the inner (dot) product of x and y, viewed
as {0, 1} vectors of length n.

Now, for a binary function f taking values 0 and 1 equiprob-
ably, it can be checked that the minimum probability of error
for guessing f(X) given Y ∈ Zn

2 is

1

2
− ||p0 − p1||1

4
(12)

where
p0(Y )

def
= P (Y |f(X) = 0)

and
p1(Y )

def
= P (Y |f(X) = 1)

and where || · ||1 denotes the �1 norm. Since the Fourier
transform is unitary, the Cauchy-Schwartz inequality gives

||p0 − p1||1
4

≤ 2n
||p̂0 − p̂1||2

4
. (13)

Denote by S the subset of Zn
2 such that f(x) = 1 for any

x ∈ Zn
2 , and define the uniform probability distribution

uf (x) =

{ 1
|S| x ∈ S

0 else.

Observe that p1(y) can be written as the convolution6

p1(y
n) = (uf � v)(y)

where v denotes the noise distribution of the channel, i.e.

v(y) = pwt(y)(1− p)n−wt(y)

where wt(y) denotes the Hamming weight of y. Hence, since

v̂(y) = (1 − 2p)wt(y)

we have
p̂1(y) = ûf (y)(1− 2p)wt(y).

Using that f is balanced, we have
1

2
(p0(y) + p1(y)) = u(y)

where u(y) denotes the uniform distribution over Zn
2 . Hence,

p̂0(y) = 2 · û(y)− ûf(y)(1 − 2p)wt(y).

Therefore

||p̂0 − p̂1||22
=

∑
y∈Zn

2

(2 · û(y)− 2ûf(y)(1 − 2p)wt(y))2

=
∑
y �=0n

4|ûf(y)|2(1 − 2p)2wt(y) (14)

since ûf(0
n) = û(0n). Because the Fourier transform is

unitary, ∑
y

|ûf (y)|2 =
2−n

|S| = 21−2n

is fixed regardless of the choice of the balanced set S.
Therefore, to maximize the right-hand side of (14), f should
concentrate its Fourier mass on coefficients with low Hamming
weight. Because ûf(0

n) = 2−n is fixed regardless of S, the
best scenario is to concentrate the remaining Fourier mass∑

y �=0n

|ûf (y)|2 = 21−2n − 2−2n = 2−2n

on the Fourier coefficients with Hamming weight 1. Hence we
deduce that∑

y �=0n

4|ûf(y)|2(1− 2p)2wt(y) ≤ 2−2n(4(1− 2p)2). (15)

From (12), (13), (14), and (15) the probability of error for
guessing a balanced function f from Y n is at least

1

2
− 2(1− 2p)

4
= p,

with equality if and only if the set S is such that the function
f concentrates all of its mass of Fourier coefficients with
Hamming weight 0 or 1. It is a simple exercise to see that
the function

f(Xn) = Xi

has the property that the Fourier coefficients are non-zero only
for the strings 0n and ei, the all-zero vector with a single 1
at the ith coordinate. Thus, the bound is achievable.

6f � g(y)
def
=

∑
x∈Zn

2
f(x)g(y ⊕ x).
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