Telecom Paris A. Tchamkerten

Introduction to Machine Learning (SI221/MICAS911)

ASSIGNMENT 3

Exercise 1 (Error decomposition). Let h_S be an ERM_{\mathcal{H}} predictor for some function class \mathcal{H} . Write the prediction error $L_P(h_s) = \mathbb{E}_{Z \sim P}(\ell(Z, h_S))$ as

$$L_P(h_s) = \varepsilon_{app} + \varepsilon_{est}$$

where $\varepsilon_{app} := \min_{h \in \mathcal{H}} L_P(h)$ and $\varepsilon_{est} := L_P(h_s) - \varepsilon_{app}$. Interpret this error decomposition.

Exercise 2 (VC dimension, parity). Let $\mathcal{X} = \{0,1\}^n$. Given $\mathcal{I} \subseteq \{1,2,\ldots,n\}$ let

$$h_{\mathcal{I}}(x) = (\sum_{i \in \mathcal{I}} x_i) \mod 2$$

denote the parity of x over the coordinates in \mathcal{I} . Show that the VC dimension of the set of all such functions, that is

$$\mathcal{H}_{parity} = \{h_{\mathcal{I}} : \mathcal{I} \subseteq \{1, 2, \dots, n\}\},\$$

is n.

Exercise 3 (VC dimension, signed intervals). Consider the class of signed intervals over $\mathcal{X} = \mathbb{R}$

$$\mathcal{H} = \{ h_{a,b,s} : a \le b, s \in \{-1,1\} \}$$

where $h_{a,b,s}(x) = s$ if $x \in [a,b]$ and $h_{a,b,s}(x) = -s$ if $x \notin [a,b]$. Show that $VCdim(\mathcal{H})=3$.

Exercise 4 (VC dimension, halfspaces). A homogeneous halfspace is specified by a vector \mathbf{w} in \mathbb{R}^d which defines a binary function

$$\mathbf{x} \mapsto h_{\mathbf{w}}(\mathbf{x}) := \operatorname{sign}\langle \mathbf{w}, \mathbf{x} \rangle$$

Show that the VCdimension of the class of homogeneous halfspaces in \mathbb{R}^d is equal to d. Show that the VCdimension of the class of non-homogeneous halfspaces defined by

$$\mathbf{x} \mapsto h_{\mathbf{w},b}(\mathbf{x}) := \operatorname{sign}\langle \mathbf{w}, \mathbf{x} \rangle + b$$

with w in \mathbb{R}^d and b in \mathbb{R} is d+1.

Exercise 5 (VC dimension, bounds). In class we established the upper bound $VCdim(\mathcal{H}) \leq \log(|\mathcal{H}|)$. Here we will show that this bound can be quite loose.

- 1. Find an example of a class \mathcal{H} of functions on the unit interval [0,1] such that $VCdim(\mathcal{H}) < \infty$ while $|\mathcal{H}| = \infty$.
- 2. Find an example of a finte class \mathcal{H} of functions on the unit interval [0,1] where $VCdim(\mathcal{H}) < \log(|\mathcal{H}|)$.