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ASSIGNMENT 3 - SOLUTIONS

Exercise 1 (Error decomposition). Let hS be an ERMH predictor for some function class H. Write
the prediction error LP (hs) = EZ∼P (`(Z, hS)) as

LP (hs) = εapp + εest

where εapp := minh∈H LP (h) and εest := LP (hs)− εapp. Interpret this error decomposition.

Solution. εapp represents the lowest error probability that can be achieved by any predictor in H if
the data distribution P is known. Since it depends on H, it is sometimes referred to as inductive
bias, this is the error/bias due to the learner choice of the class of predictorsH. The larger the class
H the lower εapp.

On the other hand the estimation error εest refers to the “error overhead” due to the fact that
ERM relies on empirical samples, and is only an approximation of the true (minimal) risk (notice
that εest ≤ LP (hs) as hs ∈ H). By constrast with εapp, εest depends also on the number of samples.
Typically, the more the number of samples, the lower εest.

Therefore, for a given number of samples, reducing the bias implies considering a rich class
H. But a rich class is also more prone to overfitting and therefore may increase εest. Conversely,
reducing εest increases εapp, a scenario sometimes referred to as “underfitting.” As an extreme case,
ifH consists of all functions, then εapp = 0 but the NFL theorem implies a huge number of samples
if we ever want to achieve a small εest.

Exercise 2 (VC dimension, parity). Let X = {0, 1}n. Given I ⊆ {1, 2, . . . , n} let

hI(x) = (
∑
i∈I

xi) mod 2

denote the parity of x over the coordinates in I. Show that the VC dimension of the set of all such
functions, that is

Hparity = {hI : I ⊆ {1, 2, . . . , n}},

is n.

Solution. As an upper bound we have

V Cdim(Hparity) ≤ log2(|Hparity|).

To show that this bound is tight it suffices to consider the set composed of the basis vectors in
{0, 1}n
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Exercise 3 (VC dimension, signed intervals). Consider the class of signed intervals over X = R

H = {ha,b,s : a ≤ b, s ∈ {−1, 1}}
where ha,b,s(x) = s if x ∈ [a, b] and ha,b,s(x) = −s if x /∈ [a, b]. Show that VCdim(H)=3.

Solution. We first show that there exists a set of cardinality 3 that can be shattered by H. Let
A = {1, 2, 3}. The following table describes one way (specific choices of a and b) to shatter all
possible ways of shattering A withH:

1 2 3 a b s
- - - 0.5 3.5 -1
- - + 2.5 3.5 1
- + - 1.5 2.5 1
- + + 1.5 3.5 1
+ - - 0.5 1.5 1
+ - + 1.5 2.5 -1
+ + - 0.5 2.5 1
+ + + 0.5 3.5 1

Hence, V Cdim(H) ≥ 3. Now pick any set of cardinality 4 A = {x1, x2, x3, x4} which we assume,
without loss of generality to satisfy x1 < x2 < x3 < x4. Any such set cannot be completely
shattered as the labeling y1 = y3 = −1 and y2 = y4 = 1 cannot be obtained.

Exercise 4 (VC dimension, halfspaces). A homogeneous halfspace is specified by a vector w in Rd

which defines a binary function

x 7→ hw(x) := sign〈w,x〉
Show that the VCdimension of the class of homogeneous halfspaces in Rd is equal to d. Show that
the VCdimension of the class of non-homogeneous halfspaces defined by

x 7→ hw,b(x) := sign〈w,x〉+ b

with w in Rd and b in R is d+ 1.

Solution. See Linear predictors chapter, Theorem 9.2, 9.3 UML book (hardcopy)

Exercise 5 (VC dimension, bounds). In class we established the upper bound V Cdim(H) ≤
log(|H|). Here we will show that this bound can be quite loose.

1. Find an example of a classH of functions on the unit interval [0, 1] such that V Cdim(H) <∞
while |H| =∞.

2. Find an example of a finite classH of functions on the unit interval [0, 1] where V Cdim(H) <
log(|H|).

Solution. • The class H of indicator function 1{x ≥ t} with t ∈ R is infinite while its VC
dimension equals 1.

• The class of functions composed of only 1{x ≥ 1} and 1{x ≤ 1/2} has vcdimension equal
to zero.
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