ASSIGNMENT 3 - SOLUTIONS

Exercise 1 (Error decomposition). Let h_S be an ERM_{\mathcal{H}} predictor for some function class \mathcal{H} . Write the prediction error $L_P(h_s) = \mathbb{E}_{Z \sim P}(\ell(Z, h_S))$ as

$$L_P(h_s) = \varepsilon_{app} + \varepsilon_{est}$$

where $\varepsilon_{app} := \min_{h \in \mathcal{H}} L_P(h)$ and $\varepsilon_{est} := L_P(h_s) - \varepsilon_{app}$. Interpret this error decomposition.

Solution. ε_{app} represents the lowest error probability that can be achieved by any predictor in \mathcal{H} if the data distribution P is known. Since it depends on \mathcal{H} , it is sometimes referred to as *inductive bias*, this is the error/bias due to the learner choice of the class of predictors \mathcal{H} . The larger the class \mathcal{H} the lower ε_{app} .

On the other hand the estimation error $\varepsilon_{\rm est}$ refers to the "error overhead" due to the fact that ERM relies on empirical samples, and is only an approximation of the true (minimal) risk (notice that $\varepsilon_{\rm est} \leq L_P(h_s)$ as $h_s \in \mathcal{H}$). By constrast with $\varepsilon_{\rm app}$, $\varepsilon_{\rm est}$ depends also on the number of samples. Typically, the more the number of samples, the lower $\varepsilon_{\rm est}$.

Therefore, for a given number of samples, reducing the bias implies considering a rich class \mathcal{H} . But a rich class is also more prone to overfitting and therefore may increase ε_{est} . Conversely, reducing ε_{est} increases ε_{app} , a scenario sometimes referred to as "underfitting." As an extreme case, if \mathcal{H} consists of all functions, then $\varepsilon_{\text{app}} = 0$ but the NFL theorem implies a huge number of samples if we ever want to achieve a small ε_{est} .

Exercise 2 (VC dimension, parity). Let $\mathcal{X} = \{0,1\}^n$. Given $\mathcal{I} \subseteq \{1,2,\ldots,n\}$ let

$$h_{\mathcal{I}}(x) = (\sum_{i \in \mathcal{I}} x_i) \mod 2$$

denote the parity of x over the coordinates in \mathcal{I} . Show that the VC dimension of the set of all such functions, that is

$$\mathcal{H}_{parity} = \{ h_{\mathcal{I}} : \mathcal{I} \subseteq \{1, 2, \dots, n\} \},\$$

is n.

Solution. As an upper bound we have

$$VCdim(\mathcal{H}_{parity}) \le \log_2(|\mathcal{H}_{parity}|).$$

To show that this bound is tight it suffices to consider the set composed of the basis vectors in $\{0,1\}^n$

Exercise 3 (VC dimension, signed intervals). Consider the class of signed intervals over $\mathcal{X} = \mathbb{R}$

$$\mathcal{H} = \{h_{a,b,s} : a \le b, s \in \{-1,1\}\}$$

where $h_{a,b,s}(x) = s$ if $x \in [a,b]$ and $h_{a,b,s}(x) = -s$ if $x \notin [a,b]$. Show that $VCdim(\mathcal{H})=3$.

Solution. We first show that there exists a set of cardinality 3 that can be shattered by \mathcal{H} . Let $\mathcal{A} = \{1, 2, 3\}$. The following table describes one way (specific choices of a and b) to shatter all possible ways of shattering \mathcal{A} with \mathcal{H} :

1	2	3	a	b	s
-	-	-	0.5	3.5	-1
-	-	+	2.5	3.5	1
-	+	-	1.5	2.5	1
-	+	+	1.5	3.5	1
+	-	-	0.5	1.5	1
+	-	+	1.5	2.5	-1
+	+	-	0.5	2.5	1
+	+	+	0.5	3.5	1

Hence, $VCdim(H) \ge 3$. Now pick any set of cardinality $4 \mathcal{A} = \{x_1, x_2, x_3, x_4\}$ which we assume, without loss of generality to satisfy $x_1 < x_2 < x_3 < x_4$. Any such set cannot be completely shattered as the labeling $y_1 = y_3 = -1$ and $y_2 = y_4 = 1$ cannot be obtained.

Exercise 4 (VC dimension, halfspaces). A homogeneous halfspace is specified by a vector \mathbf{w} in \mathbb{R}^d which defines a binary function

$$\mathbf{x} \mapsto h_{\mathbf{w}}(\mathbf{x}) := \operatorname{sign}\langle \mathbf{w}, \mathbf{x} \rangle$$

Show that the VCdimension of the class of homogeneous halfspaces in \mathbb{R}^d is equal to d. Show that the VCdimension of the class of non-homogeneous halfspaces defined by

$$\mathbf{x} \mapsto h_{\mathbf{w},b}(\mathbf{x}) := \operatorname{sign}\langle \mathbf{w}, \mathbf{x} \rangle + b$$

with w in \mathbb{R}^d and b in \mathbb{R} is d+1.

Solution. See Linear predictors chapter, Theorem 9.2, 9.3 UML book (hardcopy)

Exercise 5 (VC dimension, bounds). In class we established the upper bound $VCdim(\mathcal{H}) \leq \log(|\mathcal{H}|)$. Here we will show that this bound can be quite loose.

- 1. Find an example of a class \mathcal{H} of functions on the unit interval [0,1] such that $VCdim(\mathcal{H}) < \infty$ while $|\mathcal{H}| = \infty$.
- 2. Find an example of a finite class \mathcal{H} of functions on the unit interval [0,1] where $VCdim(\mathcal{H}) < \log(|\mathcal{H}|)$.

Solution. • The class \mathcal{H} of indicator function $1\{x \geq t\}$ with $t \in \mathbb{R}$ is infinite while its VC dimension equals 1.

• The class of functions composed of only $1\{x \ge 1\}$ and $1\{x \le 1/2\}$ has vedimension equal to zero.