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ASSIGNMENT 3 - SOLUTIONS
Exercise 1. Is the code C = {000, 110, 011, 101}MDS?

Solution. n = 3, k = 2, d = 2, hence d = n− k + 1 and it is an MDS code.

Exercise 2. Consider an [n, k, d] MDS code over Fq. Show that

1. the number of codewords of weight d is

Nd =

(
n

d

)
(q − 1).

Hint. Pick a subset of k − 1 coordinates and fix the corresponding values to zero. Pick any
other coordinate and let the symbol value in this coordinate run through all q symbols in Fq.

2. Show that the number of codewords of weight d+ 1 is

Nd+1 =

(
n

d+ 1

)(
(q2 − 1)−

(
d+ 1

d

)
(q − 1)

)
.

Solution. 1. Because the code is MDS, for any given k coordinates, the components correspond
to codewords in a one-to-one manner, that is they span every of the qk components. Now, pick
arbitrary k − 1 components and fix the corresponding values to zero. Because of the previous
argument, this set of k − 1 zero components is consistent with at least one other codeword.
Now, pick another component. To any non-zero value of this component corresponds a unique
codeword whose weight is at most n−(k−1), but since the minimum weight is d, they all have
weight d. Hence, for any given subset of k−1 coordinates, there are q−1 codewords of weight
d and with zeroes at those k − 1 positions . In total we thus have (q − 1)

(
n

k−1

)
= (q − 1)

(
n
d

)
.

2. Consider any subset of d+1 = n− k+2 coordinates, call it S. Take two of these coordinates
and combine them with the remaining k − 2 coordinates to form an information set. Fix the
components in the k− 2 coordinates to zero, and let the remaining two coordinates run freely
through Fq.These q2 information set combinations must correspond to q2 codewords. (In fact,
we may view this subset of codewords as a shortened (d +1,2,d) MDS code.) One of these
codewords must be the all-zero codeword, since the code is linear. The remaining q2 − 1
codewords must have weight d or d+1. Among the remaining n− (k−2) positions pick one,
call it a, and set its value to zero. Now there is a set of k − 1 positions with zeroes. Referring
to part 1. we know that there the number of codewords with weight d and with zeroes on these
positions is q − 1. There are d + 1 =

(
d+1
d

)
ways to choose a. So the number of codewords

with zeroes in set S and of weight d+ 1 is

(q2 − 1)−
(
d+ 1

d

)
(q − 1) .

The expression for Nd+1 then follows by considering all subsets S of cardinality k− 1 among
the n coordinates.
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Exercise 3. Suppose we are in F2. Find

1. gcd(x4 + x2 + 1, x2 + 1)

2. gcd(x6 + x5 + x3 + x+ 1, x4 + x2 + 1)

3. gcd(x6 + x5 + x3 + x+ 1, x4 + x3 + x+ 1)

Solution. 1. 1

2. x4 + x2 + 1

3. x2 + x+ 1

Exercise 4. Show that a Reed-Solomon code with 2 message symbols and n codeword symbols is
an n times repetition code.

Solution. If we have a 2 message symbols, encoding polynomials are of degree zero (i.e., are
constants) and evaluated n times.

Exercise 5. Construct an RS(n = 4, k = 2) code. For the construction you may want to consider
the irreducible polynomial X2 + X + 1 over F2 and the evaluation points (to be justified) α1 = 0,
α2 = 1, α3 = x, α4 = x+ 1 = x2.

Solution. Since n = 4 we need a base field with (at least) 4 elements. So let’s choose the base field
F4 = F2[X]/(X2 +X + 1) whose elements are thus

{0, 1, x, x+ 1 = x2}.

Since k = 2, the message polynomials are of degree k − 1 = 1 and can be written as f0 + f1x with
f0, f1 ∈ F4. Thus the mapping between information symbols and codewords is given by

(f0, f1)→ (f0 + f1α1, f0 + f1α2, f0 + f1α3, f0 + f1α4).

The full mapping is thus

0 0 → (0 0 0 0) x 0 → (x x x x)
0 1 → (0 1 x x+ 1) x 1 → (x x+ 1 0 1)
0 x → (0 x x+ 1 1) x x → (x 0 1 x+ 1)
0 x+ 1 → (0 x+ 1 1 x) x x+ 1 → (x 1 x+ 1 0)
1 0 → (1 1 1 1) x+ 1 0 → (x+ 1 x+ 1 x+ 1 x+ 1)
1 1 → (1 0 x+ 1 x) x+ 1 1 → (x+ 1 x 1 0)
1 x → (1 x+ 1 x 0) x+ 1 x → (x+ 1 1 0 x)
1 x+ 1 → (1 x 0 x+ 1) x+ 1 x+ 1 → (x+ 1 0 x 1)

2



Exercise 6. Consider the following mapping from (Fq)
k to (Fq)

k+1. Let (f0, f1, . . . , fk−1) be any
k-tuple over Fq, and define the polynomial f(x) = f0 + f1x + . . . + fk−1x

k−1 of degree less than
k. Map (f0, f1, ..., fk−1) to the (q + 1)-tuple ({f(αi), αi ∈ Fq}, fk−1)—i.e., to the RS codeword
corresponding to f(x), plus an additional component equal to fk−1.

Show that the qk(q+1)-tuples generated by this mapping as the polynomial f(z) ranges over all
qk polynomials over Fq of degree < k form a linear (n = q + 1, k, d = n− k + 1) MDS code over
Fq. [Hint:f(x) has degree < k − 1 if and only if fk−1 = 0.]

Solution. The code has length n = q + 1. It is linear because the sum of codewords corresponding
tof(x) and g(x) is the codeword corresponding to f(x) + g(x), another polynomial of degree less
than k. Its dimension is k because no polynomial other than the zero polynomial maps to the zero
(q + 1)-tuple.

To prove that the minimum weight of any nonzero codeword is d = n− k + 1, use the hint and
consider the two possible cases for fk−1:

• If fk−1 6= 0, then degf(x) = k− 1. By the fundamental theorem of algebra, the RS codeword
corresponding to f(x) has at most k − 1 zeroes. Moreover, the fk−1 component is nonzero.
Thus the number of nonzero components in the code (q+1)-tuple is at least q− (k−1)+1 =
n− k + 1.

• If fk−1 = 0 and f(x) = 0, then degf(x) ≤ k − 2. By the fundamental theorem of algebra,
the RS codeword corresponding to f(x) has at most k − 2 zeroes, so the number of nonzero
components in the code (q + 1)-tuple is at least q − (k − 2) = n− k + 1.

Exercise 7. Suppose we want to correct bursts of errors, that is error patterns that affect a certain
number of consecutive bits. Suppose we are given an [n, k] RS code over F2t . Show that this code
yields a binary code which can correct any burst of (b(n− k)c/2− 1)t bits.

Solution. Map each 2t symbols of F2t into t bits. The code can correct up to (d − 1)/2 symbol
errors which translates into an error correction capability of (b(d − 1)/2c − 1)t consecutive bits
(b(d− 1)/2ct if the burst of errors starts at the beginning of a symbol).

Exercise 8 (Secret sharing). Throughout, we let C be a binary linear code of length n. We say that
a codeword v′ covers a codeword v if the non-zero components of v are a subset of the non-zero
components of v′. A non-zero codeword v is said to be minimal if it covers no other codeword.

1. Let v′ be a non-zero non-minimal codeword of C. Argue that v′ covers some minimal
codeword which we denote as v(1).

Solution. Since v′ is non-minimal it covers at least some other codeword.

2. Argue that v′ − v(1) is another codeword with weight strictly less than v′.

Solution. By linearity v′ − v(1) is another codeword. It has weight strictly less than v′ since
a set of non-zero coordinates of v′ are flipped.
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3. Deduce that v′ − v(1)− v(2)− . . .− v(s) = 0 for some minimal codewords v(1), . . . , v(s).

Solution. By recursion.

4. Secret sharing: Let C be an [n, k] binary linear code. An information set I is a set of k
components whose values entirely specify any codeword (for instance, for an MDS code, any
k components is an information set). Show that there always exists an information set that
contains the first component, unless all codewords have their first component equal to zero.

Solution. If the first component of every codeword is always 0, the first component provides
no information about the codeword. Thus, the first component cannot be included in any
information set, because otherwise the information set would be of size k − 1. Alternatively,
observe that in this case the first column of the generator matrix is zero.

If there exists at least one codeword with c1 = 1, the first component contributes information
and may be part of an information set as we describe next. To find an information set that
contains the first component it suffices to select k indices corresponding to k columns of the
generator that are linearly independent and that contain the first column—the resulting k × k
submatrix of the generator matrix is nonsingular.

5. Pick v1 ∈ {0, 1} uniformly at random, this will be our “secret”. Assign uniformly random
values from {0, 1} to all k− 1 components vj , j ∈ I\{1}, independently of v1. From {vj, j ∈
I} compute the full codeword v = v1, v2, . . . , vn. Distribute digits v2, v3, . . . , vn to n − 1
distinct persons.

We now provide secrecy analysis for this scheme and analyze the sets of persons that are able
to recover the secret v1.

(a) A set of t persons, with combined knowledge of vj1 , vj2 , . . . , vjt , represents a critical set
if they can recover the secret v1 without error, but any proper subset of these persons
recovers the value of v1 only with probability 1/2. Show that if a set of t persons, with
combined knowledge of vj1 , vj2 , . . . , vjt , represents a critical set, then

v1 = vj1 + . . .+ vjt mod 2.

Hint: consider the parity check matrix representation of C

Solution. By the definition of the critical set v1 = f(vj1 , vj2 , . . . , vjt) for some function
f , and this function can only be linear since the code is linear. To see this, suppose for
notational convenience that vj1 = v2, vj2 = v3, . . . , vjt = vt

(b) Deduce that the codeword with zeros everywhere except at positions 1 and {ji, i =
1, . . . , t} belongs to the dual code C⊥ of C.

Solution. For any c ∈ C we have 〈c, v′〉 = v1 + vj1 + . . . + vjt mod 2 = 0. So
v′ ∈ C⊥.
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(c) Deduce that any critical set of persons corresponds to a minimal codeword in C⊥ whose
first component is a 1, and such that the persons indices correspond to the components
of the non-zero entries of the codeword, after the first component.

Solution. Follows from a. and b.

(d) We now illustrate the secret sharing scheme through an example. Consider the code
whose parity-check matrix is

H =

(
1 1 1 0 0
0 1 0 1 1

)
It can be checked that positions 1,2,4 form an information set. Fix the first digit of
a codeword, v1, our secret, then choose the second and fourth positions uniformly at
random, and compute the full codeword v. Give the digits in positions 2,3,4, and 5 to
Alice, Bob, Carol, and David, respectively. What are the critical sets that can recover the
secret v1?

Solution. C⊥ = {00000, 11100, 01011, 10111}. The codewords starting with a 1 are
11100 and 10111, and they are minimal. 11100 corresponds to Alice and Bob, and
10111 corresponds to Bob, Carol, and David.
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