
SI221 Practical assignment #7:

Principal Component Analysis and Boosting -

October 2021

Instructions

Read all the instructions below carefully before you start working on the assignment.

- Please submit the source code and a pdf report of your work. You can use the
Jupyter notebook instead, by submitting the ipynb file. Each file must have as title:
TP PCA Boosting Student1 Student2.

- Late assignments will not be corrected.

- You must do this assignment in groups of 2. Please submit no more than one
submission per group.

- You must implement all algorithms from scratch.

- Code that does not work will not be considered.

- Send your work to: arthur.louchart@telecom-paris.fr

Practical assignment objective

• To implement the PCA from scratch and apply it for dimensionality reduction and
image denoising.

• To implement the AdaBoost algorithm from scratch in order to learn Boosting
technique.

Working with PCA1

Large data sets are increasingly common and are often difficult to interpret. In order to
interpret such data sets, methods are required to drastically reduce their dimensionality
in an interpretable way, such that most of the information in the data is preserved. Many
techniques have been developed for this purpose, but principal component analysis (PCA)
is one of the oldest and most widely used.

Principal component analysis (PCA) is a technique for reducing the dimensionality of
such data sets, increasing interpretability but at the same time minimizing the reconstruc-
tion error. Thus, PCA seeks the linear projection of the data in a space of reduced size
by minimizing the mean square error between the input data and its recovered version.

1Reference paper: ”Principal component analysis: A review and recent developments” by I. T. Jolliffe
and J. Cadima, 2016.
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Let x1, . . . ,xn be n vectors in Rd that represent n samples described by d features.
Let’s reduce the dimensionality of the input vectors from the original space of d variables
to a new space of p variables, such that p<d. Using PCA, we aim to find an orthogonal
matrix P ∈ Rd×p so that

argmin
P∈Rd×p

n∑
i=1

∥∥xi −PPTxi

∥∥2 . (1)

PCA consists of the following steps (via Eigendecomposition):

1. A common practice is to center the data before applying PCA, i.e.: compute the
sample mean µ = 1

n

∑n
i=1 xi and then x̄i = xi − µ in order to compute the mean-

subtracted feature matrix X̄=[x̄1, . . . , x̄n]T ∈ Rn×d.

2. Compute the eigendecomposition of X̄TX̄ to identify the principal components2.

3. Form a projection matrix P ∈ Rd×p containing p eigenvectors associated to the p
largest eigenvalues (computed in the previous step).

4. Transform the mean-subtracted data to obtain lower-dimensional data through: Y=
X̄P ∈ Rn×p. Observe that the columns of Y represent the transformed features,
which is given by the a linear combination of the input features.

5. Recover the input data by the following transformation: X̂=YPT + µ ∈ Rn×d.

Reminders on AdaBoost

In this homework we aim at applying the AdaBoost algorithm for a two-class classification
problem. The algorithm sequentially applies a weak classification to modified versions
of the data. By increasing the weights of the missclassified observations, each weak
learner focuses on the error of the previous one. The predictions are aggregated through
a weighted majority vote. We work with the Hastie (10.2) dataset.

2Remark that the matrix X̄TX̄ is proportional to the sample covariance matrix of the data set. In
case n < d, check the book ”Understanding Machine Learning: From Theory to Algorithms”, by Shai
Shalev-Shwartz and Shai Ben-David.
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A reminder of the AdaBoost algorithm can be found in algorithm 1.

Algorithm 1: AdaBoost Algorithm

Given: A sample sequence S = {(x1, y1), (x2, y2), . . . , (xm, ym)} and a weak
learning algorithm A.
Initialization:

P1 = (1/m, 1/m, . . . , 1/m)

while t ≤ T do

ht = A(Pt)

Empirical loss with respect to Pt:

LS,Pt(ht) =

∑m
i=1 ωi1yi 6=ht(xi)∑m

i=1 ωi

Weight update

wt =
1

2
log

[
1− LS,Pt(ht)

LS,Pt(ht)

]
Distribution updated

Pt+1(xi) =
1

N
Pt+1(xi)× exp(−wtyiht(xi)) i = 1, · · · ,m

where N denotes the normalization constant.
end
Output

h̃T (x) = sign

[
T∑
t=1

wtht(x)

]
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Getting started!

1 PCA for dimensionality reduction and

image denoising

In this part we will implement the PCA from scratch and apply it for dimensionality
reduction and image denoising3. Let’s use the well-known MNIST data set that is com-
monly used for training various image processing systems and can be easily loaded from
keras.datasets4.

Short description: The MNIST data set is a large data set of handwritten digits (from
0 to 9), containing 60000 gray-scale images for training and 10000 for testing, each image
has 28x28 pixels with range of possible values from 0 to 255.

Data Preparation: For simplicity we will consider only the test data set and the first
2000 samples (in case of limited available memory). Re-scale the images to [0, 1] dividing
them by 255. Vectorize each image xi ∈ Rd and form a matrix X=[x1, . . . ,xn]T ∈ Rn×d.
Remark that we will have d=784 and n=2000.

1. Compute the eigendecomposition of the sample covariance matrix and use the eigen-
values to calculate the percentage of variance explained (given by the eigenvalues).
Plot the cumulative sum of these percentages5 versus the number of components.
Comment. Hint: Use cumsum from Numpy to calculate the cumulative sum.

2. Apply the PCA via Eigendecomposition to reduce the dimensionality of the images
for each p ∈ {50, 250, 500}. Compute the normalized reconstruction error in terms
of the Frobenius norm, i.e. ep =

∥∥X− X̂p

∣∣ |F/‖X| |F, where X denotes the input matrix,

and X̂p denotes the recovered matrix associated to each p. Visualize some recovered
images and compare them with their corresponding original images. Comment on
what happens when we reduce the number of components p.

3. Now we will apply the PCA for image denoising. Considering the same input matrix,
let’s add some Gaussian noise6 with zero mean and variance σ2 = 0.25. Visualize
the corrupted images and compare them with their corresponding original images,
you should obtain a similar figure to Fig. 1. Plot the cumulative explained variance
versus the number of components, as in the first item. Compare it with the one
obtained in the noiseless case and comment.

4. Generate the noisy data, as in the previous item, for each σ2 ∈ {0.15, 0.25, 0.50}.
Apply the PCA via Eigendecomposition for each σ2 and fixing p= 250. Visualize

3Noise reduction or denoising is the process of removal of noise from any signal or data input.
4Please do not use the data set available through Sklearn (too low resolution!).
5Also, shortly known as cumulative explained variance.
6Make sure that the range of possible values of the generated noisy data will remain between 0 and

1, as well as the input data.
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some recovered images and compare them with their corresponding noisy images.
Compute the normalized reconstruction error in terms of the Frobenius norm, ob-
tained for all values of σ2, with respect to the original images. Comment.

Figure 1: Noisy data generation.

2 AdaBoost: Building A Strong Learner from Weak

Learners

In this second exercise you will implement an AdaBoost Classifier. Fill the notebook
provided. You should obtain a figure similar Figure 2

Comment the figure.
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Figure 2: Errors of the AdaBoost Classifier as the number of iteration Increases.
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